首页> 外文期刊>Nature >Multi-petahertz electronic metrology
【24h】

Multi-petahertz electronic metrology

机译:多匹赫兹电子计量

获取原文
获取原文并翻译 | 示例
       

摘要

The frequency of electric currents associated with charge carriers moving in the electronic bands of solids determines the speed limit of electronics and thereby that of information and signal processing(1). The use of light fields to drive electrons promises access to vastly higher frequencies than conventionally used, as electric currents can be induced and manipulated on timescales faster than that of the quantum dephasing of charge carriers in solids(2). This forms the basis of terahertz (10(12) hertz) electronics in artificial superlattices(2), and has enabled light-based switches(3-5) and sampling of currents extending in frequency up to a few hundred terahertz. Here we demonstrate the extension of electronic metrology to the multi-petahertz (10(15) hertz) frequency range. We use single-cycle intense optical fields (about one volt per angstrom) to drive electron motion in the bulk of silicon dioxide, and then probe its dynamics by using attosecond (10(-18) seconds) streaking(6,7) to map the time structure of emerging isolated attosecond extreme ultraviolet transients and their optical driver. The data establish a firm link between the emission of the extreme ultraviolet radiation and the light-induced intraband, phase-coherent electric currents that extend in frequency up to about eight petahertz, and enable access to the dynamic nonlinear conductivity of silicon dioxide. Direct probing, confinement and control of the waveform of intraband currents inside solids on attosecond timescales establish a method of realizing multi-petahertz coherent electronics. We expect this technique to enable new ways of exploring the interplay between electron dynamics and the structure of condensed matter on the atomic scale.
机译:与在固体电子带中移动的电荷载流子相关的电流频率决定了电子设备的速度极限,从而决定了信息和信号处理的速度极限(1)。使用光场驱动电子有望获得比常规使用的频率高得多的频率,因为可以在时间尺度上感应和操纵电流,其速度要比固体中电荷载流子的量子相移更快(2)。这形成了人工超晶格(2)中的太赫兹(10(12)赫兹)电子学的基础,并启用了基于光的开关(3-5)并采样了频率高达几百太赫兹的电流。在这里,我们演示了电子计量学向多皮赫兹(10(15)赫兹)频率范围的扩展。我们使用单周期强光场(每埃大约1伏特)来驱动大部分二氧化硅中的电子运动,然后使用attosecond(10(-18)秒)条纹(6,7)来探测其动态新兴孤立的阿秒极端紫外线瞬变的时间结构及其光学驱动器。数据在极端紫外辐射的发射与光感应的带内,相干电流之间建立了牢固的联系,该相干电流的频率扩展至大约8皮赫兹,并能够获得二氧化硅的动态非线性电导率。在阿秒尺度上直接探测,限制和控制固体内部带内电流的波形,建立了一种实现多皮赫兹相干电子学的方法。我们希望这项技术能够为探索电子动力学和原子尺度上的凝聚态结构之间相互作用的新方法提供帮助。

著录项

  • 来源
    《Nature》 |2016年第7625期|359-363|共5页
  • 作者单位

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

    Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:52:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号