首页> 外文期刊>Nature >Monolayer atomic crystal molecular superlattices
【24h】

Monolayer atomic crystal molecular superlattices

机译:单层原子晶体分子超晶格

获取原文
获取原文并翻译 | 示例
       

摘要

Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials(1-3). Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility(4-8). The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures(9-11) but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures(12-14), but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.
机译:基于二维原子晶体如石墨烯或二硫化钼的范德华斯异质结构的人工超晶格提供了现有材料无法企及的技术机遇(1-3)。创建此类人造超晶格的典型策略依赖于艰苦的逐层剥落和重堆积,且产量和再现性有限(4-8)。使用化学气相沉积的自下而上的方法会产生高质量的异质结构(9-11),但对于高阶超晶格来说变得越来越困难。选定的二维原子晶体与碱金属离子的插入为超晶格结构提供了另一种方法(12-14),但这些晶格通常具有较差的稳定性和严重改变的电子性能。在这里,我们报告了一种新型的稳定超晶格的电化学分子嵌入方法,其中单层原子晶体与分子层交替。使用黑磷作为模型系统,我们显示与十六烷基三甲基溴化铵插层会产生单层磷分子超晶格,其中层间距离是黑磷的两倍以上,从而有效地分离了磷单层。由单层磷分子超晶格制成的晶体管的电传输研究显示,其开/关电流比超过107,具有出色的迁移率和出色的稳定性。我们进一步表明,几种不同的二维原子晶体(例如二硫化钼和二硒化钨)可以插入具有不同大小和对称性的季铵分子中,以产生具有定制分子结构,层间距离,相组成的宽泛类超晶格,电子和光学特性。这些研究为基础研究和潜在技术应用定义了通用的材料平台。

著录项

  • 来源
    《Nature》 |2018年第7695期|231-236|共6页
  • 作者单位

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA;

    CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA;

    CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA;

    Hunan Univ, Sch Phys & Elect, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China;

    Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    King Saud Univ, Coll Engn, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia;

    Hunan Univ, Sch Phys & Elect, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China;

    Univ Sci & Technol China, Key Lab Strongly Coupled Quantum Matter Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China;

    CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA;

    Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA;

    Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号