首页> 外文学位 >Characterization of redox-active monolayers for use in molecular memory devices. Part I: Self-assembled molecular monolayers on gold. Part II: Covalently linked molecular monolayers on semiconductors.
【24h】

Characterization of redox-active monolayers for use in molecular memory devices. Part I: Self-assembled molecular monolayers on gold. Part II: Covalently linked molecular monolayers on semiconductors.

机译:用于分子存储设备的氧化还原活性单分子膜的表征。第一部分:金上的自组装分子单分子层。第二部分:半导体上共价连接的分子单分子层。

获取原文
获取原文并翻译 | 示例

摘要

The work described herein, includes an evolutionary progression beginning with the initial realization that redox active molecules may be used to bridge novel synthesis of molecular materials to microelectronic memory storage devices. This realization has set forth motivation to develop and characterize a molecule-based high-density electronic storage media that is scalable in design and complexity for use in real world electronic devices.; Focused on this objective, early studies of (+230) thiol-anchored porphyrin monolayers on micron-sized Au architectures afford the unique redox characteristics that make porphyrins amendable to information storage. Initial studies set forth the first objective, to demonstrate a molecule-based approach with high-density storage operating at low power using the process of self-assembly and a well-characterized S-Au binding scheme. The second objective was to demonstrate scalability of the medium to hybrid semiconductor platforms such as Si(100) and Ge(100).; A number of important advances were made in the process of constructing and characterizing hybrid platforms for electronic information storage. First, a complete fabrication protocol was developed which is universal to all Group VI elements, anchoring the redox monolayers covalently to device-grade Si(100). The molecules exhibit robust characteristics, which include high level of stability under real world conditions over large number of cycles, operation at elevated temperatures, and processing at high temperatures in the gas or solution phase. Collectively, the new fabrication methodology meets the operational and processing challenges required for fabricating computational devices. Second, the electrical behavior of the surface bound layers was fully characterized through established voltammetric, and amperometric techniques to examine the kinetics of the redox process at the molecule/electrode interface. Success in this step affords the means to electronically measure the extent of the monolayers surface concentration, charge storage, and kinetics of electron transfer, three properties that must be understood and controlled in a prototype device. In conjunction with these studies, the structural information of the monolayers was also examined through X-ray spectroscopic, and FTIR methods that selectively probed the binding mode, surface packing density, and monolayer orientation. More importantly, the findings demonstrate a strong correlation between monolayer structure and the electron transfer properties through Group VI/Si interfaces. In general, the rate of electron exchange in the read sequence is several orders of magnitude faster than their charge dissipation rates of tens of seconds. This is a desirable property from the standpoint of molecular memory device development, in particular where a state of the art traditional trench capacitor in DRAM leaks its charge on the order of ∼10 ms.; Collectively these findings show the significance and feasibility of introducing chemical tuning and scalability onto metal and silicon based microelectronic device materials. The ability to demonstrate the rational derivitization of surface bound species, stable under low potentials over numerous cycles, has enabled us to take a step closer to constructing a prototype device. Production of the first successful hybrid molecular based device for electronic memory applications will undoubtedly pave an evolutionary path toward technological progress in new materials for the semiconductor industry.
机译:本文所述的工作包括从最初认识到氧化还原活性分子可用于将分子材料的新颖合成桥接至微电子存储器存储设备的初始认识开始的进化过程。这种认识提出了开发和表征基于分子的高密度电子存储介质的动机,该介质在设计和复杂性上可扩展以用于现实世界的电子设备。着眼于此目标,在微米级Au结构上对(+230)硫醇锚定的卟啉单分子膜的早期研究提供了独特的氧化还原特性,使卟啉可用于信息存储。最初的研究提出了第一个目标,以展示一种基于分子的方法,该方法使用自组装过程和特征明确的S-Au结合方案,可在低功率下以高密度存储。第二个目标是证明媒体对混合半导体平台(例如Si(100)和Ge(100))的可伸缩性。在构建和表征用于电子信息存储的混合平台的过程中取得了许多重要进展。首先,开发了一个完整的制造协议,该协议对于所有VI组元素都是通用的,将氧化还原单层共价固定在器件级Si(100)上。这些分子表现出强大的特性,包括在现实世界条件下进行大量循环时具有很高的稳定性,在高温下运行以及在气相或液相中在高温下进行处理。总之,新的制造方法满足了制造计算设备所需的操作和处理挑战。其次,通过建立的伏安法和安培法技术来充分表征表面结合层的电行为,以检查分子/电极界面处氧化还原过程的动力学。在这一步骤中的成功提供了一种手段来电子测量单层表面浓度,电荷存储和电子转移动力学的程度,这是原型设备必须理解和控制的三个特性。结合这些研究,还通过X射线光谱和FTIR方法检查了单层的结构信息,该方法选择性地探测了结合模式,表面堆积密度和单层取向。更重要的是,这些发现证明了单层结构与通过VI / Si族界面的电子转移特性之间的密切相关性。通常,读取序列中的电子交换速率比其数十秒的电荷耗散速率快几个数量级。从分子存储器件开发的角度来看,这是一种理想的特性,特别是在DRAM中最先进的传统沟槽电容器将其电荷泄漏至约10 ms的情况下。这些发现共同表明了将化学调节和可扩展性引入基于金属和硅的微电子器件材料的重要性和可行性。能够证明表面结合物质的合理衍生化的能力,在许多循环下均处于低电势下稳定,这使我们能够更进一步地构建原型设备。毫无疑问,首款成功的基于混合分子的电子存储设备的生产无疑将为半导体行业新材料的技术进步铺平道路。

著录项

  • 作者

    Yasseri, Amir Ali.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemistry Analytical.; Chemistry Polymer.; Chemistry Inorganic.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;高分子化学(高聚物);无机化学;分子遗传学;
  • 关键词

  • 入库时间 2022-08-17 11:44:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号