首页> 外文期刊>Natural language engineering >A weighted finite state transducer translation template model for statistical machine translation
【24h】

A weighted finite state transducer translation template model for statistical machine translation

机译:统计机器翻译的加权有限状态传感器翻译模板模型

获取原文
获取原文并翻译 | 示例

摘要

We present a Weighted Finite State Transducer Translation Template Model for statistical machine translation. This is a source-channel model of translation inspired by the Alignment Template translation model. The model attempts to overcome the deficiencies of word-to-word translation models by considering phrases rather than words as units of translation. The approach we describe allows us to implement each constituent distribution of the model as a weighted finite state transducer or acceptor. We show that bitext word alignment and translation under the model can be performed with standard finite state machine operations involving these transducers. One of the benefits of using this framework is that it avoids the need to develop specialized search procedures, even for the generation of lattices or N-Best lists of bitext word alignments and translation hypotheses. We report and analyze bitext word alignment and translation performance on the Hansards French-English task and the FBIS Chinese-English task under the Alignment Error Rate, BLEU, NIST and Word Error-Rate metrics. These experiments identify the contribution of each of the model components to different aspects of alignment and translation performance. We finally discuss translation performance with large bitext training sets on the NIST 2004 Chinese-English and Arabic-English MT tasks.
机译:我们提出用于统计机器翻译的加权有限状态换能器翻译模板模型。这是受“对齐模板”翻译模型启发的翻译的源渠道模型。该模型试图通过将短语而不是单词作为翻译单位来克服单词间翻译模型的不足。我们描述的方法允许我们将模型的每个组成分布实现为加权有限状态换能器或接受器。我们表明,可以使用涉及这些传感器的标准有限状态机操作来执行该模型下的bitext单词对齐和翻译。使用此框架的好处之一是,它甚至无需生成专门的搜索程序,甚至无需生成bitext单词对齐方式和翻译假设的格或N-Best列表。我们在对齐错误率,BLEU,NIST和单词错误率指标下,报告和分析Hansards法语-英语任务和FBIS汉-英语任务上的bitext单词对齐和翻译性能。这些实验确定了每个模型组件对对齐和翻译性能不同方面的贡献。最后,我们将针对NIST 2004中英文和阿拉伯文英文MT任务,通过大型bitext培训集讨论翻译性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号