首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Improving Structural Statistical Machine Translation for Sign Language With Small Corpus Using Thematic Role Templates as Translation Memory
【24h】

Improving Structural Statistical Machine Translation for Sign Language With Small Corpus Using Thematic Role Templates as Translation Memory

机译:使用主题角色模板作为翻译记忆库改善小语料库的手语结构统计机器翻译

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a structural statistical machine translation (SSMT) model to deal with the data sparseness problem that occurs as a result of the necessarily small corpus to translate Chinese into Taiwanese Sign Language (TSL). A parallel bilingual corpus was developed, and linguistic information from the Sinica Treebank is adopted for Chinese sentence analysis. The Synchronous Context Free Grammar (SCFG) was adopted to convert a Chinese structure to the corresponding TSL structure and then extract a translation memory which comprises the thematic relations between the grammar rules of both structures. In structural translation, the statistical MT (SMT) approach was used to align the thematic roles in the grammar rules and the translation memory provides the reference templates for TSL structure translation. Finally, the agreement information for TSL verbs was labeled for enriching the expressiveness of the translated TSL sequence. Several experiments were conducted to evaluate the translation performance and the communication effectiveness for the deaf. The evaluation results demonstrate that the proposed approach outperforms a baseline statistical MT system using the same small corpus, especially for the translation of long sentences.
机译:本文提出了一种结构统计机器翻译(SSMT)模型,以处理由于语料库很小而将中文翻译成台湾手语(TSL)所导致的数据稀疏问题。开发了一个平行的双语语料库,并采用了来自中国树库的语言信息进行中文句子分析。采用同步上下文无关语法(SCFG)将中文结构转换为相应的TSL结构,然后提取翻译记忆库,该翻译记忆库包含两个结构的语法规则之间的主题关系。在结构翻译中,使用统计MT(SMT)方法来对齐语法规则中的主题角色,并且翻译记忆库为TSL结构翻译提供参考模板。最后,标记了TSL动词的一致性信息,以丰富翻译后的TSL序列的表达能力。进行了几次实验,以评估聋人的翻译性能和交流效果。评估结果表明,该方法优于使用相同小语料库的基线统计MT系统,尤其是长句的翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号