首页> 外文期刊>Natural Computing >Population-based bio-inspired algorithms for cluster ensembles optimization
【24h】

Population-based bio-inspired algorithms for cluster ensembles optimization

机译:基于人口的生物启发算法,用于集群集合优化

获取原文
获取原文并翻译 | 示例

摘要

Clustering algorithms have been applied to different problems in many different real-word applications. Nevertheless, each algorithm has its own advantages and drawbacks, which can result in different solutions for the same problem. Therefore, the combination of different clustering algorithms (cluster ensembles) has emerged as an attempt to overcome the limitations of each clustering technique. The use of cluster ensembles aims to combine multiple partitions generated by different clustering algorithms into a single clustering solution (consensus partition). Recently, several approaches have been proposed in the literature in order to optimize or to improve continuously the solutions found by the cluster ensembles. As a contribution to this important subject, this paper presents an investigation of five bio-inspired techniques in the optimization of cluster ensembles (Genetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Coral Reefs Optimization and Bee Colony Optimization). In this investigation, unlike most of the existing work, an evaluation methodology for assessing three important aspects of cluster ensembles will be presented, assessing robustness, novelty and stability of the consensus partition delivered by different optimization algorithms. In order to evaluate the feasibility of the analyzed techniques, an empirical analysis will be conducted using 20 different problems and applying two different indexes in order to examine its efficiency and feasibility. Our findings indicated that the best population-based optimization method was PSO, followed by CRO, AG, BCO and ACO, for providing robust and stable consensus partitions.
机译:聚类算法已应用于许多不同的实际应用程序中的不同问题。尽管如此,每种算法都有自己的优点和缺点,这可能导致同样问题的不同解决方案。因此,不同聚类算法(群集集群系统)的组合已经出现为克服每个聚类技术的局限性的尝试。群集合奏的使用旨在将不同的聚类算法生成的多个分区组合成单个聚类解决方案(共识分区)。最近,在文献中提出了几种方法,以便优化或连续改进集群集群的解决方案。作为对这一重要科目的贡献,本文提出了对聚类集群(遗传算法,粒子群优化,蚁群优化,珊瑚礁优化和蜜蜂殖民地优化)进行了五种生物启发技术的调查。在这项调查中,与大多数现有工作不同,将展示用于评估集群集合的三个重要方面的评估方法,评估由不同优化算法提供的共识分区的鲁棒性,新颖性和稳定性。为了评估分析技术的可行性,将使用20个不同的问题进行实证分析,并应用两种不同的指标以检查其效率和可行性。我们的研究结果表明,最佳人口的优化方法是PSO,其次是CRO,AG,BCO和ACO,用于提供强大稳定的共识分区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号