首页> 外文期刊>Natural Computing >Multiobjective sorting-based learning particle swarm optimization for continuous optimization
【24h】

Multiobjective sorting-based learning particle swarm optimization for continuous optimization

机译:基于多目标排序的学习粒子群算法用于连续优化

获取原文
获取原文并翻译 | 示例

摘要

Canonical particle swarm optimization (PSO) utilizes the historical best experience and neighborhood's best experience of particle through linear summation to guide its search direction. Such a learning strategy is easy to use, but is inefficient when searching in the complex problem space since the global best individual only considers the fitness value but always ignores the diversity information. Hence, designing learning strategies where the guidance exemplar simultaneously considers the fitness value and diversity have become one of the most salient and active PSO research topics. In this paper, a multiobjective sorting-based learning (MSL) strategy for PSO is proposed and this modified PSO is named as multiobjective sorting-based learning particle swarm optimization. The MSL strategy can guide particles to fly in better direction by constructing a guidance exemplar with better fitness value and diversity. Since the fitness value and diversity are simultaneously considered to construct the guidance exemplar instead of the global best individual in canonical PSO, a better balance between exploration and exploitation can be achieved. The proposed strategy is applied to the original PSO algorithm, as well as several advanced PSO variants. Experimental results on sixteen benchmark problems show that the proposed strategy is an effective approach to enhance the performance of most PSO algorithms studied in terms of solution quality, convergence speed and algorithm reliability.
机译:典范粒子群优化(PSO)通过线性求和利用粒子的历史最佳经验和邻域的最佳经验来指导其搜索方向。这种学习策略易于使用,但是在复杂的问题空间中搜索时效率低下,因为全局最佳个人仅考虑适应性值,而始终忽略多样性信息。因此,在指导范例同时考虑适应性价值和多样性的情况下设计学习策略已成为PSO研究中最为突出和活跃的主题之一。本文提出了一种基于PSO的多目标排序学习(MSL)策略,并将该改进的PSO称为基于多目标排序的学习粒子群优化算法。 MSL策略可以通过构建具有更好适应性值和多样性的指导示例来指导粒子向更好的方向飞行。由于同时考虑了适应度值和多样性来构建指导范本,而不是规范PSO中的全球最佳个体,因此可以在勘探与开发之间实现更好的平衡。所提出的策略适用于原始的PSO算法以及几种高级PSO变体。针对十六个基准问题的实验结果表明,所提出的策略是一种提高大多数PSO算法性能的有效方法,无论是在解决方案质量,收敛速度还是算法可靠性方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号