首页> 外文期刊>Multimedia Tools and Applications >An efficient framework of Bregman divergence optimization for co-ranking images and tags in a heterogeneous network
【24h】

An efficient framework of Bregman divergence optimization for co-ranking images and tags in a heterogeneous network

机译:Bregman散度优化的有效框架,用于在异构网络中共同对图像和标签进行排名

获取原文
获取原文并翻译 | 示例

摘要

Graph-based ranking is an effective way of ranking images by making use of the graph structure. However, its applications are usually limited to individual image graphs, which are derived from self-contained features of images. Nowadays, many images in social web sites are often associated with semantic information (i.e., tags). Ranking of these orderless tags is helpful in understanding and retrieving images, thus, improving the overall ranking performance if their mutual reinforcement is considered. Unlike previous work only focusing on individual image or tag graphs, in this paper, we investigate the problem of co-ranking images and tags in a heterogeneous network. Considering that ranking on images and tags can be conducted simultaneously, we present a novel co-ranking method with random walks that is able to significantly improve the ranking effectiveness on both images and tags. We further improve the performance of our algorithm in computational complexity and the out-of-sample problem. This is achieved by casting the co-ranking as a Bregman divergence optimization, under which we transform the original random walks into an equivalent optimal kernel matrix learning problem. Extensive experiments conducted on three benchmarks show that our approach outperforms the state-of-the-art local ranking approaches and scales on large-scaled databases.
机译:基于图的排名是一种利用图结构对图像进行排名的有效方法。但是,其应用通常仅限于从图像的自包含特征派生的单个图像图。如今,社交网站中的许多图像通常与语义信息(即标签)相关联。这些无序标签的排名有助于理解和检索图像,因此,如果考虑它们的相互加强,则可以提高整体排名性能。与以前的工作仅关注单个图像或标签图不同,在本文中,我们研究了在异构网络中对图像和标签进行联合排名的问题。考虑到图像和标签的排名可以同时进行,我们提出了一种新颖的随机游动联合排名方法,该方法能够显着提高图像和标签的排名有效性。我们进一步提高了算法在计算复杂度和样本外问题方面的性能。这是通过将联合排名转换为Bregman发散优化来实现的,在此基础上,我们将原始随机游走转换为等效的最优核矩阵学习问题。在三个基准上进行的大量实验表明,我们的方法优于最新的本地排名方法,并且在大型数据库上的规模也得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号