首页> 外文期刊>Multimedia Tools and Applications >Encoding and video content based HEVC video quality prediction
【24h】

Encoding and video content based HEVC video quality prediction

机译:基于编码和视频内容的HEVC视频质量预测

获取原文
获取原文并翻译 | 示例

摘要

Advances in multimedia devices and video compression techniques and the availability of increased network bandwidth in both fixed and mobile networks has increased the proliferation of multimedia applications (e.g. IPTV, video streaming and online gaming). However, this has also posed a real challenge to network and service providers to deliver these applications with an acceptable Quality of Experience (QoE). In these multimedia applications, it is highly desirable to predict and if possible control video quality to meet such QoE and user expectations. Streamed video quality is affected by both encoding and transmission processes. The impacts of these processes are content dependent. This issue has gradually been recognised in video quality modelling research in recent years. In this paper, we carried out objective and subjective tests on video sequences to investigate the impact of video content type and encoding parameter settings on HEVC video quality. Initial results show that varying video content type and encoding parameters impact video quality. Based on the test results, we developed a content-based video quality prediction (CVQP) model that takes into account HEVC encoding parameter such as Quantization Parameter (QP) and video content type (characterised by motion activities and complexity of video sequences). We achieved an accuracy of 92 % for the test dataset when model predicted PSNR values were compared with full reference PSNR measurements. The performance of the model was also evaluated by comparing predicted PSNR with those of Double Stimulus Impairment Scale (DSIS) subjective quality ratings. Results show a good correlation between actual MOS and predicted PSNR. The proposed model could be used by content providers to determine the initial quality of videos based on QP and content type.
机译:多媒体设备和视频压缩技术的进步,以及固定和移动网络中增加的网络带宽的可用性,已经增加了多媒体应用程序(例如IPTV,视频流和在线游戏)的扩散。但是,这也给网络和服务提供商带来了真正的挑战,以提供可接受的体验质量(QoE)的这些应用程序。在这些多媒体应用中,非常需要预测并尽可能控制视频质量以满足此类QoE和用户期望。流视频质量受编码和传输过程的影响。这些过程的影响取决于内容。近年来,这一问题已在视频质量建模研究中逐渐得到认可。在本文中,我们对视频序列进行了主观和主观测试,以研究视频内容类型和编码参数设置对HEVC视频质量的影响。初步结果表明,不同的视频内容类型和编码参数会影响视频质量。根据测试结果,我们开发了一个基于内容的视频质量预测(CVQP)模型,该模型考虑了HEVC编码参数,例如量化参数(QP)和视频内容类型(以运动活动和视频序列的复杂性为特征)。当将模型预测的PSNR值与完整参考PSNR测量值进行比较时,测试数据集的准确性达到92%。还通过将预测的PSNR与双刺激减损量表(DSIS)主观质量等级的PSNR进行比较,评估了模型的性能。结果表明,实际MOS与预测PSNR之间具有良好的相关性。内容提供商可以使用所提出的模型来基于QP和内容类型确定视频的初始质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号