首页> 外文期刊>Multimedia Tools and Applications >Discovering internal social relationship for influence-aware service recommendation
【24h】

Discovering internal social relationship for influence-aware service recommendation

机译:发现内部社会关系以进行影响力感知服务推荐

获取原文
获取原文并翻译 | 示例

摘要

Existing approaches, such as semantic content-based or Collaborative Filtering-based recommendations, fail to exploit social aspects of services because services lack social relationships and do not consider social influence. In this paper, we propose a methodology for connecting distributed services in a global social service network (GSSN) to facilitate discovering internal social relationship for social influence-aware service recommendation. First, we propose a novel platform for constructing a GSSN by linking distributed services with social links based on quality of social link. We then propose a flexible model of the effective awareness of social influence, which provides a quantitative measure of the strength of influence between services. Next, a novel social influence-aware service recommendation approach is proposed based on GSSN using internal social relationship among services. The experimental results demonstrated that our new approach can solve the service recommendation problem with a low usage threshold and high accuracy, where the user preferences are exploited by a recommend-as-you-go method.
机译:现有方法(例如基于语义内容或基于协作过滤的建议)无法利用服务的社会方面,因为服务缺乏社会关系并且没有考虑社会影响。在本文中,我们提出了一种在全球社会服务网络(GSSN)中连接分布式服务的方法,以促进发现内部社会关系,以进行社会影响感知的服务推荐。首先,我们提出了一个新颖的平台,用于通过基于社交链接的质量将分布式服务与社交链接链接来构建GSSN。然后,我们提出了一种有效的社会影响意识的灵活模型,该模型提供了服务之间影响强度的定量度量。接下来,利用服务之间的内部社会关系,提出了一种基于GSSN的新型社会影响感知服务推荐方法。实验结果表明,我们的新方法能够以较低的使用阈值和较高的准确度解决服务推荐问题,即通过“按需推荐”方法来利用用户偏好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号