首页> 外文期刊>Multimedia Tools and Applications >Recognition method for apple fruit based on SUSAN and PCNN
【24h】

Recognition method for apple fruit based on SUSAN and PCNN

机译:基于SUSAN和PCNN的苹果果实识别方法

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a recognition method for apple fruit based on SUSAN (Smallest univalues segment assimilating nucleus) and PCNN (Pulse coupled neural network) to accurately identify and locate fruit targets. First, homomorphic filtering is used to conduct image enhancement by considering the influence of different lighting conditions on the segmentation effect, thus achieving light compensation. After an image is processed by R-G color differences in RGB color space, the apple image is segmented using the PCNN image segmentation method based on minimum cross entropy. In terms of prior knowledge of the maximum and minimum radius of the apple fruit, an improved random Hough transform method is used to detect the characteristic circle of the apple target; according to the edge of the apple target obtained by the SUSAN edge detection algorithm. Comparative experiments with different segmentation algorithms confirm that the algorithm of this study has outstanding performance in reducing the influence of insufficient light on the segmentation result. In 50 images, 93% of apples were accurately identified, which proves the effectiveness of the algorithm in this study.
机译:本研究提出了一种基于SUSAN(最小单值片段同化核)和PCNN(脉冲耦合神经网络)的苹果果实识别方法,以准确地识别和定位果实目标。首先,通过考虑不同光照条件对分割效果的影响,使用同态滤波进行图像增强,从而实现光补偿。在通过RGB色彩空间中的R-G色差处理图像后,使用基于最小交叉熵的PCNN图像分割方法对苹果图像进行分割。根据对苹果果实最大和最小半径的先验知识,使用一种改进的随机霍夫变换方法来检测苹果目标的特征圆。根据SUSAN边缘检测算法获得的苹果目标边缘。使用不同分割算法的对比实验证实,该研究算法在减少光线不足对分割结果的影响方面具有出色的性能。在50张图像中,准确地识别了93%的苹果,这证明了该算法在本研究中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号