首页> 外文期刊>Multimedia Tools and Applications >Denoising of sparse images in impulsive disturbance environment
【24h】

Denoising of sparse images in impulsive disturbance environment

机译:脉冲干扰环境下稀疏图像的去噪

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a method for denoising and reconstruction of sparse images based on a gradient-descent algorithm. It is assumed that the original (non-noisy) image is sparse in the two-dimensional Discrete Cosine Transform (2D-DCT) domain. It is also assumed that a number of image pixels is corrupted by a salt and pepper noise. In addition, we assume that there are pixels corrupted by a noise of any value. In this paper we introduce a method to find the positions of the corrupted pixels when the noise is not of the salt and pepper form. The proposed algorithm for noisy pixels detection and reconstruction works blindly. It does not require the knowledge about the positions of corrupted pixels. The only assumption is that the image is sparse and that the noise degrades this property. The advantage of this reconstruction algorithm is that we do not change the uncorrupted pixels in the process of the reconstruction, unlike common reconstruction methods. Corrupted pixels are detected and removed iteratively using the gradient of sparsity measure as a criterion for detection. After the corrupted pixels are detected and removed, the gradient algorithm is employed to reconstruct the image. The algorithm is tested on both grayscale and color images. Additionally, the case when both salt and pepper noise and a random noise, within the pixel values range, are combined is considered. The proposed method can be used without explicitly imposing the image sparsity in a strict sense. Quality of the reconstructed image is measured for different sparsity and noise levels using the structural similarity index, the mean absolute error, mean-square error and peak signal-to-noise ratio and compared to the traditional median filter and recent algorithms, one based on the total-variations reconstruction and a two-stage adaptive algorithm.
机译:提出了一种基于梯度下降算法的稀疏图像去噪与重建方法。假定原始(非噪声)图像在二维离散余弦变换(2D-DCT)域中稀疏。还假定盐和胡椒噪声会破坏许多图像像素。另外,我们假设存在像素被任何值的噪声破坏的情况。在本文中,我们介绍了一种当噪声不是椒盐形式的噪声时查找损坏像素位置的方法。所提出的用于噪声像素检测和重建的算法是盲目的工作。它不需要有关损坏像素的位置的知识。唯一的假设是图像稀疏,并且噪声会降低此属性。这种重建算法的优点是,与普通重建方法不同,我们在重建过程中不会更改未损坏的像素。使用稀疏度的梯度作为检测标准,迭代地检测和删除损坏的像素。在检测到并删除损坏的像素后,采用梯度算法重建图像。该算法已在灰度和彩色图像上进行了测试。另外,考虑将盐和胡椒噪声以及像素值范围内的随机噪声都组合的情况。在严格意义上,可以在不显式施加图像稀疏性的情况下使用所提出的方法。使用结构相似性指数,平均绝对误差,均方误差和峰值信噪比,针对不同的稀疏度和噪声水平测量重建图像的质量,并将其与传统的中值滤波器和最新算法进行比较,基于总变量重建和两阶段自适应算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号