首页> 外文期刊>Multimedia Tools and Applications >Hybrid descriptor for placental maturity grading
【24h】

Hybrid descriptor for placental maturity grading

机译:胎盘成熟度分级的混合描述符

获取原文
获取原文并翻译 | 示例

摘要

Placental maturity grading (PMG) is quite essential to assess fetal growth and maternal health. To this date, PMG has mostly relied on the subjective judgment of the clinician, which is time-consuming and may cause wrong estimation due to redundancy and repeatability of the process. To tackle it, we propose an automatic method to stage placental maturity via deep hybrid descriptors based on B-mode ultrasound (BUS) and color Doppler energy (CDE) images. Specifically, convolutional descriptors extracted from multiple deep convolutional neural networks (DCNNs) and hand-crafted features are integrated to get the hybrid descriptors for grading performance boosting. First, different models with various feature layers are combined to obtain hybrid descriptors from images. Second, the transfer learning strategy is also utilized to enhance the grading performance via the deeply represented features. Third, extracted descriptors are encoded by Fisher vector (FV). Finally, we use support vector machine (SVM) as the classifier to grade placental maturity. The experimental results demonstrate that our proposed method could achieve good performance in PMG.
机译:胎盘成熟度分级(PMG)对于评估胎儿生长和产妇健康是至关重要的。在此日期,PMG主要依赖于临床医生的主观判断,这是耗时的,可能导致由于过程的冗余和可重复性而导致错误的估算。为了解决它,我们通过基于B模式超声(总线)和彩色多普勒能量(CDE)图像,通过深杂交描述符提出自动方法来阶段造型成熟度。具体地,从多个深卷积神经网络(DCNNS)和手工制作的特征中提取的卷积描述符被集成以获取用于分级性能提升的混合描述符。首先,组合具有各种特征层的不同模型以获得来自图像的混合描述符。其次,转移学习策略还用于通过深度代表的特征来提高分级性能。第三,提取的描述符由Fisher Vector(Fv)编码。最后,我们使用支持向量机(SVM)作为分类器到级别胎盘成熟度。实验结果表明,我们的提出方法可以在PMG实现良好的性能。

著录项

  • 来源
    《Multimedia Tools and Applications》 |2020年第30期|21223-21239|共17页
  • 作者单位

    School of Biomedical Engineering National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Shenzhen University Shenzhen China;

    School of Biomedical Engineering National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Shenzhen University Shenzhen China;

    Department of Industrial and Manufacturing Systems Engineering The University of Michigan Dearborn MI USA;

    School of Biomedical Engineering National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Shenzhen University Shenzhen China;

    Department of Industrial and Manufacturing Systems Engineering The University of Michigan Dearborn MI USA;

    School of Biomedical Engineering National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Shenzhen University Shenzhen China;

    School of Biomedical Engineering National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Shenzhen University Shenzhen China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Placental maturity grading; Convolutional neural networks; Hybrid descriptors; Fisher vector; Color Doppler energy imaging;

    机译:胎盘成熟度等级;卷积神经网络;混合描述符;费舍尔矢量;彩色多普勒能量成像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号