首页> 外文期刊>Multimedia Tools and Applications >Analytics in real time surveillance video using two-bit transform accelerative regressive frame check
【24h】

Analytics in real time surveillance video using two-bit transform accelerative regressive frame check

机译:实时监控视频中的分析使用双位变换加速回归帧检查

获取原文
获取原文并翻译 | 示例

摘要

Face recognition is an established area of research in computer vision and it had played a great role in developing content based personal retrieval systems from real time surveillance video feeds. Face recognition in live videos is a complex problem as facial features fall into high dimensional space and involves large search time. Though, there is an extensive improvement in computational infrastructure over the years, the need for improved search algorithms without increase in cost is a challenge. Existingmethodologies in literature fail to perform in real time scenarios as the cost of feature matching is high. Hence, this research work proposes a Two-Bit Transform AccelerativeRegressive Frame Check algorithm (2BT-ARFCA) methodology that facilitates face recognition in video at a faster rate, suitable for surveillance and authentication applications. Finally the results are experimentally validated with variousvideo datasets and the state-of-the-art techniques proves that the proposed method performs better in terms of Specificity, Sensitivity, Mean Square Error (MSE), Peak signal to noise Ratio (PSNR), The Structural Similarity Index (SSIM) and accuracy.
机译:面部识别是计算机愿景的既定研究领域,它在从实时监控视频饲料中开发基于内容的个人检索系统方面发挥了巨大作用。随着面部特征落入高维空间并涉及大的搜索时间,面部识别是一个复杂的问题。然而,多年来计算基础设施的广泛改善,对改进的搜索算法的需求没有成本的增加是挑战。文学中的现有方法未能在实时方案中执行,因为特征匹配的成本很高。因此,该研究工作提出了一种两位变换加速度增强帧检查算法(2BT-ARFCA)方法,其促进了视频中的面部识别以更快的速率,适用于监控和认证应用。最后,通过各种实验数据集进行实验验证,最先进的技术证明了所提出的方法在特异性,灵敏度,均方误差(MSE),峰值信号到噪声比(PSNR)方面表现更好,结构相似性指数(SSIM)和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号