首页> 外文期刊>Multimedia Tools and Applications >Fusing depth and colour information for human action recognition
【24h】

Fusing depth and colour information for human action recognition

机译:融合深度和颜色信息以识别人类动作

获取原文
获取原文并翻译 | 示例

摘要

In recent years, human action recognition systems have been increasingly developed to support a wide range of application areas, such as surveillance, behaviour analysis, security, and many others. In particular, data fusion approaches that use depth and colour information (i.e., RGB-D data) seem to be particularly promising for recognizing large classes of human actions with a high level of accuracy. Anyway, existing data fusion approaches are mainly based on feature fusion strategies, which tend to suffer of some limitations, including the difficult of combining different feature types and the management of missing information. To address the two problems just reported, we propose an RGB-D data based human action recognition system supported by a decision fusion strategy. The system, starting from the well-known Joint Directors of Laboratories (JDL) data fusion model, analyses human actions separately for each channel (i.e., depth and colour). The actions are modelled as a sum of visual words by using the traditional Bag-of-Visual-Words (BoVW) model. Subsequently, on each channel, these actions are classified by using a multi-class Support Vector Machine (SVM) classifier. Finally, the classification results are fused by a Naive Bayes Combination (NBC) method. The effectiveness of the proposed system has been proven on the basis of three public datasets: UTKinect-Action3D, CAD-60, and LIRIS Human Activities. Experimental results, compared with key works of the current state-of-the-art, have shown that what we propose can be considered a concrete contribute to the action recognition field.
机译:近年来,人类动作识别系统已得到越来越多的发展,以支持广泛的应用领域,例如监视,行为分析,安全性以及许多其他领域。特别是,使用深度和颜色信息(即RGB-D数据)的数据融合方法似乎对于以高准确度识别大类人类动作特别有希望。无论如何,现有的数据融合方法主要基于特征融合策略,这往往会受到一些限制,包括难以组合不同的特征类型以及对丢失信息的管理。为了解决刚刚报告的两个问题,我们提出了一种基于RGB-D数据的人类动作识别系统,该系统具有决策融合策略。该系统从著名的实验室联合主任(JDL)数据融合模型开始,分别分析每个通道的人为行为(即深度和颜色)。通过使用传统的视觉单词袋(BoVW)模型,将动作建模为视觉单词的总和。随后,在每个通道上,通过使用多类支持向量机(SVM)分类器对这些动作进行分类。最后,通过朴素贝叶斯组合(NBC)方法融合分类结果。该系统的有效性已经在三个公共数据集的基础上得到了证明:UTKinect-Action3D,CAD-60和LIRIS Human Activities。与当前最新技术的主要工作相比,实验结果表明,我们的建议可以被认为是对动作识别领域的具体贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号