首页> 外文期刊>Multimedia, IEEE Transactions on >A Multifaceted Approach to Social Multimedia-Based Prediction of Elections
【24h】

A Multifaceted Approach to Social Multimedia-Based Prediction of Elections

机译:基于社会多媒体的选举预测的多层面方法

获取原文
获取原文并翻译 | 示例

摘要

Compared with real-world polling, election prediction based on social media can be far more timely and cost-effective due to the immediate availability of fast evolving Web contents. However, information from social media may suffer from noise and sampling bias that are caused by various factors and thus pose one of biggest challenges in social media-based data analytics. This paper presents a new model, named competitive vector auto regression (CVAR), to build a reliable forecasting system for the US presidential elections and US House race. Our CVAR model is designed to analyze the correlation between image-centric social multimedia and real-world phenomena. By introducing the competition mechanism, CVAR compares the popularity among multiple competing candidates. More importantly , CVAR is able to combine visual information with textual information from rich and multifaceted social multimedia, which helps extract reliable signals and mitigate sampling bias. As a result, our proposed system can 1) accurately predict the election outcome, 2) infer the sentiment of the candidate photos shared in the social media communities, and 3) account for the sentiment of viewer comments towards the candidates on the related images. The experiments on the 2012 US presidential election at both national and state levels, as well as the 2014 US House race, have demonstrated the power and promise of the proposed approach.
机译:与现实世界中的民意测验相比,基于社交媒体的选举预测可以立即获得快速发展的Web内容,从而更加及时,更具成本效益。但是,来自社交媒体的信息可能会受到各种因素引起的噪声和采样偏差的影响,因此成为基于社交媒体的数据分析中的最大挑战之一。本文提出了一种名为竞争向量自回归(CVAR)的新模型,以为美国总统选举和美国众议院选举建立可靠的预测系统。我们的CVAR模型旨在分析以图像为中心的社交多媒体与现实世界现象之间的相关性。通过引入竞争机制,CVAR比较了多个竞争候选人之间的受欢迎程度。更重要的是,CVAR能够将视觉信息与来自丰富多样的社交多媒体的文本信息结合起来,从而有助于提取可靠的信号并减轻采样偏差。结果,我们提出的系统可以1)准确预测选举结果,2)推断社交媒体社区中共享的候选照片的情感,以及3)考虑观众对相关图像上的候选人的评论的情感。 2012年美国总统大选在国家和州一级进行的实验以及2014年美国众议院选举的实验证明了该方法的力量和希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号