首页> 外文期刊>IEEE transactions on multimedia >Edge Caching for Layered Video Contents in Mobile Social Networks
【24h】

Edge Caching for Layered Video Contents in Mobile Social Networks

机译:移动社交网络中分层视频内容的边缘缓存

获取原文
获取原文并翻译 | 示例

摘要

To improve the performance of mobile video delivery, caching layered videos at a site near to mobile end users (e.g., at the edge of mobile service provider's backbone) was advocated because cached videos can be delivered to mobile users with a high quality of experience, e.g., a short latency. How to optimally cache layered videos based on caching price, the available capacity of cache nodes, and the social features of mobile users, however, is still a challenging issue. In this paper, we propose a novel edge caching scheme to cache layered videos. First, a framework to cache layered videos is presented in which a cache node stores layered videos for multiple social groups, formed by mobile users based on their requests. Due to the limited capacity of the cache node, these social groups compete with each other for the number of layers they request to cache, aiming at maximizing their utilities while all mobile users in each group share the cost involved in the cache of video contents. Second, a Stackelberg game model is developed to study the interaction among multiple social groups and the cache node, and a noncooperative game model is introduced to analyze the competition among mobile users in different social groups. Third, leveraging the backward induction method, the optimal strategy of each player in the game model is proposed. Finally, simulation results show that the proposed method outperforms the exiting counterparts with a higher hit ratio and lower delay of delivering video contents.
机译:为了提高移动视频交付的性能,提倡在移动最终用户附近的站点(例如,在移动服务提供商骨干网的边缘)缓存分层视频,因为缓存的视频可以以高质量的体验交付给移动用户,例如较短的等待时间。然而,如何根据缓存价格,缓存节点的可用容量以及移动用户的社交功能来最佳地缓存分层视频仍然是一个具有挑战性的问题。在本文中,我们提出了一种新颖的边缘缓存方案来缓存分层视频。首先,提出了一种缓存分层视频的框架,其中缓存节点为移动用户根据其请求形成的多个社交组存储分层视频。由于缓存节点的容量有限,这些社交组在争夺他们请求缓存的层数方面相互竞争,旨在最大程度地发挥其效用,而每个组中的所有移动用户均承担视频内容缓存所涉及的成本。其次,开发了Stackelberg博弈模型来研究多个社交群体与缓存节点之间的交互,并引入了非合作博弈模型来分析不同社交群体中移动用户之间的竞争。第三,利用后向归纳法,提出了博弈模型中每个玩家的最优策略。最后,仿真结果表明,该方法具有较高的命中率和较低的视频内容传递延迟,优于现有方法。

著录项

  • 来源
    《IEEE transactions on multimedia》 |2017年第10期|2210-2221|共12页
  • 作者单位

    School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China;

    School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China;

    Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China;

    Computer Science and Engineering Department, University of North Texas, Denton, TX, USA;

    School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile communication; Social groups; Mobile computing; Games; Servers; Analytical models; Relays;

    机译:移动通信;社会团体;移动计算;游戏;服务器;分析模型;继电器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号