首页> 外文期刊>Multimedia, IEEE Transactions on >A Dynamic Topic Model and Matrix Factorization-Based Travel Recommendation Method Exploiting Ubiquitous Data
【24h】

A Dynamic Topic Model and Matrix Factorization-Based Travel Recommendation Method Exploiting Ubiquitous Data

机译:动态主题模型和基于矩阵分解的出行推荐方法

获取原文
获取原文并翻译 | 示例

摘要

The vast volumes of community-contributed geotagged photos (CCGPs) available on the Web can be utilized to make travel location recommendations. The sparsity of user location interactions makes it difficult to learn travel preferences, because a user usually visits only a limited number of travel locations. Static topic models can be used to solve the sparsity problem by considering user travel topics. However, all travel histories of a user are regarded as one document drawn from a set of static topics, ignoring the evolving of topics and travel preferences. In this paper, we propose a dynamic topic model (DTM) and matrix factorization (MF)-based travel recommendation method. A DTM is used to obtain the temporally fine-grained topic distributions (i.e., implicit topic information) of users and locations. In addition, a large amount of explicit information is extracted from the metadata and visual contents of CCGPs, check-ins, and point of interest categories datasets. The information is used to obtain user–user and location–location similarity information, which is imposed as two regularization terms to constraint MF. The proposed method is evaluated on a publicly available Flickr dataset. Experimental results demonstrate that the proposed method can generate significantly superior recommendations compared to other state-of-the-art travel location recommendation studies.
机译:Web上大量的社区贡献的地理照片(CCGP)可用于提出旅行位置建议。用户位置交互的稀疏性使得难以学习旅行偏好,因为用户通常仅访问有限数量的旅行位置。静态主题模型可以通过考虑用户旅行主题来解决稀疏性问题。但是,用户的所有旅行历史都被视为从一组静态主题中提取的一个文档,而忽略了主题和旅行偏好的发展。在本文中,我们提出了一种基于动态主题模型(DTM)和基于矩阵分解(MF)的旅行推荐方法。 DTM用于获取用户和位置的时间上细粒度的主题分布(即隐式主题信息)。此外,还从CCGP的元数据和可视内容,签入和兴趣点类别数据集中提取了大量显式信息。该信息用于获取用户-用户和位置-位置相似性信息,将其作为约束条件MF的两个正则化项。在公开可用的Flickr数据集上评估提出的方法。实验结果表明,与其他最新的旅行地点推荐研究相比,该方法可以产生明显更好的推荐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号