首页> 外文期刊>IEEE transactions on multimedia >Graph-Based Static 3D Point Clouds Geometry Coding
【24h】

Graph-Based Static 3D Point Clouds Geometry Coding

机译:基于图的静态3D点云几何编码

获取原文
获取原文并翻译 | 示例

摘要

Recently, 3D visual representation models such as light fields and point clouds are becoming popular due to their capability to represent the real world in a more complete and immersive way, paving the road for new and more advanced visual experiences. The point cloud representation model is able to efficiently represent the surface of objects/scenes by means of a set of 3D points and associated attributes and is increasingly being used from autonomous cars to augmented reality. Emerging imaging sensors have made it easier to perform richer and denser point cloud acquisitions, notably with millions of points, making it impossible to store and transmit these very high amounts of data without appropriate coding. This bottleneck has raised the need for efficient point cloud coding solutions in order to offer more immersive visual experiences and better quality of experience to the users. In this context, this paper proposes an efficient lossy coding solution for the geometry of static point clouds. The proposed coding solution uses an octree-based approach for a base layer and a graph-based transform approach for the enhancement layer where an Inter-layer residual is coded. The performance assessment shows very significant compression gains regarding the state-of-the-art, especially for the most relevant lower and medium rates.
机译:近来,诸如3D视觉表示模型(例如光场和点云)正变得越来越流行,这是因为它们能够以更加完整和身临其境的方式表示现实世界,为获得新的更高级的视觉体验铺平了道路。点云表示模型能够通过一组3D点和相关属性有效地表示对象/场景的表面,并且从无人驾驶汽车到增强现实的使用越来越多。新兴的成像传感器使执行更丰富,更密集的点云采集变得更加容易,尤其是具有数百万个点时,如果不进行适当的编码,就不可能存储和传输非常大量的数据。这个瓶颈提出了对高效点云编码解决方案的需求,以便为用户提供更身临其境的视觉体验和更好的体验质量。在这种情况下,本文针对静态点云的几何形状提出了一种有效的有损编码解决方案。所提出的编码解决方案对基础层使用基于八叉树的方法,对于其中对层间残差进行编码的增强层使用基于图的变换方法。性能评估显示出有关最新技术的非常显着的压缩增益,尤其是对于最相关的较低和中等速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号