首页> 外文期刊>IEEE transactions on multimedia >Robust Object Tracking Using Manifold Regularized Convolutional Neural Networks
【24h】

Robust Object Tracking Using Manifold Regularized Convolutional Neural Networks

机译:使用流形正则化卷积神经网络的鲁棒目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

In visual tracking, usually only a small number of samples are labeled, and most existing deep learning based trackers ignore abundant unlabeled samples that could provide additional information for deep trackers to boost their tracking performance. An intuitive way to explain unlabeled data is to incorporate manifold regularization into the common classification loss functions, but the high computational cost may prohibit those deep trackers from practical applications. To overcome this issue, we propose a two-stage approach to a deep tracker that takes into account both labeled and unlabeled samples. The annotation of unlabeled samples is propagated from its labeled neighbors first by exploring the manifold space that these samples are assumed to lie in. Then, we refine it by training a deep convolutional neural network using both labeled and unlabeled data in a supervised manner. Online visual tracking is further carried out under the framework of particle filters with the presented manifold regularized deep model being updated every few frames. Experimental results on different tracking datasets demonstrate that our tracker outperforms most existing tracking approaches. The source code and results are available at: https://github.com/shenjianbing/MRCNNTracking.
机译:在视觉跟踪中,通常仅标记少量样本,并且大多数现有的基于深度学习的跟踪器会忽略大量未标记的样本,这些样本可能会为深度跟踪器提供更多信息,从而提高其跟踪性能。解释未标记数据的一种直观方法是将流形正则化合并到常见的分类损失函数中,但是高昂的计算成本可能会使这些深度跟踪器无法实际应用。为解决此问题,我们提出了一种针对深层跟踪器的两阶段方法,该方法应同时考虑标记和未标记的样本。首先,通过探索假定这些样本所处的流形空间,从未标记样本的标注中扩展出未标记样本的注释。然后,我们通过在有监督方式下使用标记和未标记数据训练深度卷积神经网络来对其进行优化。在线视觉跟踪在粒子过滤器的框架下进一步进行,所提供的流形正规化深度模型每隔几帧就会更新一次。在不同跟踪数据集上的实验结果表明,我们的跟踪器优于大多数现有跟踪方法。源代码和结果位于:https://github.com/shenjianbing/MRCNNTracking。

著录项

  • 来源
    《IEEE transactions on multimedia》 |2019年第2期|510-521|共12页
  • 作者单位

    Beijing Inst Technol, Beijing Lab Intelligent Informa Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Beijing Lab Intelligent Informa Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Beijing Lab Intelligent Informat Technol, Sch Comp Sci, Beijing 100081, Peoples R China|Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates;

    Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China;

    Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates|Univ East Anglia, Sch Comp Sci, Norwich NR5 8HZ, Norfolk, England;

    Australian Natl Univ, Res Sch Engn, Canberra, ACT 0200, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convolutional neural networks; deep learning; deep tracker; manifold regularization; object tracking; online tracking;

    机译:卷积神经网络;深度学习;深度跟踪器;流形正则化;对象跟踪;在线跟踪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号