首页> 外文期刊>Multimedia, IEEE Transactions on >Robust Visual Tracking via Smooth Manifold Kernel Sparse Learning
【24h】

Robust Visual Tracking via Smooth Manifold Kernel Sparse Learning

机译:通过平滑的流形内核稀疏学习进行强大的视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Various sparse-representation-based tracking meth-ods have been proposed to tackle visual tracking problems, and most of them use simple intensity feature as the observation of target object. Moreover, most of them only take into account either global or local image representation and only exploit the underlying relationship among target candidates in a single frame. All of these may make their appearance models less robust to deal with complex scenes. To overcome these problems, we propose a smooth manifold kernel sparse tracker under the framework of particle filter. The proposed method characterizes targets and candidates with region covariance matrix descriptors, and constructs object tracking as a kernel sparse learning model based on symmetric positive-definite (SPD) manifolds. The spatial-temporal interdependencies among candidates and global-local representations of candidates are jointly considered and unified via the kernel sparse learning model. Moreover, in order to make the model more robust, the detection of outlier tasks is also taken into account. To handle the variation of object appearance, we develop a robust and efficient online dictionary learning algorithm on SPD manifolds. Extensive experiments on multiple benchmark datasets demonstrate that our tracker performs favorably against state-of-the-art trackers.
机译:已经提出了各种基于稀疏表示的跟踪方法来解决视觉跟踪问题,并且大多数方法都使用简单的强度特征作为对目标对象的观察。而且,它们中的大多数仅考虑全局或局部图像表示,并且仅在单个帧中利用目标候选者之间的潜在关系。所有这些可能会使它们的外观模型在处理复杂场景时不那么健壮。为了克服这些问题,我们提出了一种在粒子滤波器框架下的平滑流形核稀疏跟踪器。该方法利用区域协方差矩阵描述子对目标和候选对象进行特征描述,并将对象跟踪构造为基于对称正定(SPD)流形的核稀疏学习模型。通过内核稀疏学习模型,可以共同考虑和统一候选人之间的时空依赖性和候选人的全局局部表示。此外,为了使模型更健壮,还考虑了异常任务的检测。为了处理对象外观的变化,我们在SPD流形上开发了一种强大而有效的在线词典学习算法。在多个基准数据集上进行的广泛实验表明,我们的跟踪器相对于最新的跟踪器具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号