首页> 外文期刊>Multidiscipline modeling in materials and structures >Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network
【24h】

Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network

机译:通过人工神经网络预测摩擦搅拌加工产生的AA6082铝表面复合材料的磨损率

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various ceramic particles including B4C, TiC, SiC, Al_2O_3 and WC were incorporated as the dispersed phase within AA6082 aluminum alloy by FSP. The wear rate of the composite is then investigated experimentally by making use of a design of experiments technique where wear rate is evaluated as the output parameter. The input parameters considered include tool rotational speed, traverse speed, groove width and ceramic particle type. An artificial neural network (ANN) simulation was then used to describe the wear rate of the surface composites. The weights of the network were adjusted to minimize the mean squared error using a feed forward back propagation technique. The effect of the individual input parameters on wear rate was then inferred from the ANN models. Trends are presented and related to the associated nucrostructures observed. The TiC infused AMC displayed the lowest wear rate whereas the Al_2O_3 infused AMC displayed the highest, within the scope of the current investigation. The paper aims to discuss these issues. Design/methodology/approach - The paper used ANN for the research study. Findings - The finding of this paper is that the wear rate of AA6063 aluminum surface composites is influenced remarkably by FSP parameters. Originality/value - Original work of authors.
机译:目的 - 摩擦搅拌加工(FSP)作为固态工艺具有有效铝基复合材料(AMC)的潜力。在该研究中,通过FSP将包括B4C,TIC,SiC,SiC,Al_2O_3和WC的各种陶瓷颗粒掺入AA6082铝合金内的分散相。然后通过使用设计实验技术的设计来实验研究复合材料的磨损率,其中磨损率被评估为输出参数。所考虑的输入参数包括刀具转速,横向速度,凹槽宽度和陶瓷颗粒类型。然后使用人工神经网络(ANN)模拟来描述表面复合材料的磨损率。调整网络的权重,以最小化使用馈送前后传播技术的平均平方误差。然后从ANN模型推断出各个输入参数对磨损率的影响。呈现趋势并与观察到的相关核算相关。 TIC注入的AMC展示了最低的磨损率,而AL_2O_3注入的AMC在当前调查范围内显示出最高的。本文旨在讨论这些问题。设计/方法/方法 - 用于研究研究的纸张。调查结果 - 本文的发现是通过FSP参数显着影响AA6063铝表面复合材料的磨损率。原创性/价值 - 作者的原创作品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号