首页> 外文期刊>Multidiscipline modeling in materials and structures >Cattaneo-Christov double-diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation
【24h】

Cattaneo-Christov double-diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation

机译:具有活化能和非线性热辐射的粘弹性纳米流体的Cattaneo-Christov双扩散模型

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to explore the novel aspects of activation energy in the nonlinearly convective flow of Walter-B nanofluid in view of Cattaneo-Christov double-diffusion model over a permeable stretched sheet. Features of nonlinear thermal radiation, dual stratification, non-uniform heat generation/ absorption, MHD and binary chemical reaction are also evaluated for present flow problem. Walter-B nanomaterial model is employed to describe the significant slip mechanism of Brownian and thermophoresis diffusions. Generalized Fourier's and Fick's laws are examined through Cattaneo-Christov double-diffusion model. Modified Arrhenius formula for activation energy is also implemented. Design/methodology/approach - Several techniques are employed for solving nonlinear differential equations. The authors have used a homotopy technique (HAM) for our nonlinear problem to get convergent solutions. The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear coupled ordinary/partial differential equations. The capability of the HAM to naturally display convergence of the series solution is unusual in analytical and semi-analytic approaches to nonlinear partial differential equations. This analytical method has the following great advantages over other techniques: 1. It provides a series solution without depending upon small/large physical parameters and applicable for not only weakly but also strongly nonlinear problems. 2. It guarantees the convergence of series solutions for nonlinear problems. 3. It provides us a great choice to select the base function of the required solution and the corresponding auxiliary linear operator of the homotopy. Brief mathematical description of HAM technique (Liao, 2012; Mabood et al, 2016) is as follows. For a general nonlinear equation: N[u(x)] = 0, (1) where N denotes a nonlinear operator, x the independent variables and u(x) is an unknown function, respectively. By means of generalizing the traditional homotopy method, Liao (1992) creates the so-called zero-order deformation equation: (1-q)L[û(x; q)-u_0(x)] = qhH(x)N[û(x;q)], (2) here q ∈ [0,1] is the embedding parameter, H(x) ≠ 0 is an auxiliary function, h(≠ 0) is a nonzero parameter, L is an auxiliary linear operator, u_0(x) is an initial guess of u(x) and û(x; q) is an unknown function, respectively. It is significant that one has great freedom to choose auxiliary things in HAM. Noticeably, when q = 0 and (7 = 1, following holds: û(x;0) = u_0(x) and û(x;1) = u(x), (3) Expanding û(x; q) in Taylor series with respect to (q), we have: û(x; q)=u_0(x) + ∞∑(m=1) u_m(x)q~m, where u_m(x)=1/m! (∂~mû(x;q))/∂q~m|_(q=0) (4) If the initial guess, the auxiliary linear operator, the auxiliary h and the auxiliary function are selected properly, then the series (4) converges at q = 1, then we have: u(x) = u_0(x)+ (+∞)∑(m=1) u_m(x). (5) By defining a vector (→u) = (u_0(x), u_1(x),u_2(x) ,..., u_n(x)), and differentiating Equation (2) m-times with respect to (q) and then setting q = 0, we obtain the mth-order deformation equation: L[û_m(x)-x_m u_(m-1)(x)] = hH(x)R_m[(→u) _(m-1)], (6) where: R_m[(→u)_(m-1)]=1/(m-1)! (∂~(m-1)N[u(x;q)])/∂q~(m-1)|_(q=0) and x_m=|0 m≤1 1 m>1 . (7) Applying L~(-1) on both sides of Equation (6), we get: u_m(x) = x_mu_(m-1)(x) + hL~(-1)[H(x)R_m[(→u)_(m-1)]]. (8) In this way, we obtain u_m for m ≥ 1, at mth-order, we have: u(x)=M∑(m=1) u_m(x). (9) Findings - It is evident from obtained results that the nanoparticle concentration field is directly proportional to the chemical reaction with activation energy. Additionally, both temperature and concentration distributions are declining functions of thermal and solutal stratification parameters (P_1) and (P_2), respectively. Moreover, temperature Θ(Ω_1) enhances for greater values of Brownian motion parameter (N_b), non-uniform heat source/sink parameter (B_1) and thermophoresis factor (N_t). Reverse behavior of concentration γ(Ω_1) field is remarked in view of (N_b) and (N_t). Graphs and tables are also constructed to analyze the effect of different flow parameters on skin friction coefficient, local Nusselt number, Sherwood numbers, velocity, temperature and concentration fields. Originality/value - The novelty of the present problem is to inspect the Arrhenius activation energy phenomena for viscoelastic Walter-B nanofluid model with additional features of nonlinear thermal radiation, non-uniform heat generation/absorption, nonlinear mixed convection, thermal and solutal stratification. The novel aspect of binary chemical reaction is analyzed to characterize the impact of activation energy in the presence of Cattaneo- Christov double-diffusion model. The mathematical model of Buongiorno is employed to incorporate Brownian motion and thermophoresis effects due to nanoparticles.
机译:目的-本文的目的是根据可渗透拉伸片材上的Cattaneo-Christov双重扩散模型,探索Walter-B纳米流体的非线性对流中活化能的新方面。对于当前的流动问题,还评估了非线性热辐射,双重分层,不均匀的生热/吸收,MHD和二元化学反应的特征。采用Walter-B纳米材料模型来描述布朗和热泳扩散的显着滑动机理。广义傅里叶和菲克定律通过Cattaneo-Christov双重扩散模型进行检验。还实现了用于活化能的修正的Arrhenius公式。设计/方法/方法-采用多种技术求解非线性微分方程。作者对我们的非线性问题使用了同伦技术(HAM)来获得收敛的解。同伦分析法(HAM)是一种半解析技术,用于求解非线性耦合的普通/偏微分方程。在非线性偏微分方程的解析和半解析方法中,HAM能够自然显示级数解的收敛性是不寻常的。与其他技术相比,此分析方法具有以下巨大优势:1.它提供了一种不依赖于大/小物理参数的串联解决方案,不仅适用于弱而且适用于强非线性问题。 2.保证了非线性问题的级数解的收敛性。 3.它为我们提供了一个很好的选择,可以选择所需解的基函数和同伦的相应辅助线性算子。 HAM技术的简要数学描述(Liao,2012; Mabood等,2016)如下。对于一般的非线性方程:N [u(x)] = 0,(1)其中N表示非线性算子,x为自变量,u(x)分别为未知函数。通过推广传统的同伦方法,Liao(1992)创建了所谓的零阶变形方程:(1-q)L [û(x; q)-u_0(x)] = qhH(x)N [ û(x; q)],(2)式中q∈[0,1]是嵌入参数,H(x)≠0是辅助函数,h(≠0)是非零参数,L是辅助线性运算符u_0(x)是u(x)的初始猜测,and(x; q)分别是未知函数。拥有在HAM中选择辅助物品的极大自由非常重要。值得注意的是,当q = 0且(7 = 1)时,以下成立:û(x; 0)= u_0(x)且û(x; 1)= u(x),(3)将û(x; q)展开为关于(q)的泰勒级数,我们有:û(x; q)= u_0(x)+ ∞∑(m = 1)u_m(x)q〜m,其中u_m(x)= 1 / m!( ∂〜mû(x; q))/∂q〜m | _(q = 0)(4)如果初始猜测,辅助线性算子,辅助h和辅助函数均已正确选择,则级数(4 )在q = 1处收敛,则我们得到:u(x)= u_0(x)+(+∞)∑(m = 1)u_m(x)。(5)通过定义向量(→u)=(u_0 (x),u_1(x),u_2(x),...,u_n(x)),并相对于(q)微分方程(2)m次,然后设置q = 0,我们得到第m阶变形方程:L [û_m(x)-x_m u_(m-1)(x)] = hH(x)R_m [(→u)_(m-1)],(6)其中:R_m [( →u)_(m-1)] = 1 /(m-1)!(∂〜(m-1)N [u(x; q)])/∂q〜(m-1)| _(q = 0)且x_m = | 0m≤11 m> 1。(7)在等式(6)的两边加上L〜(-1),我们得到:u_m(x)= x_mu_(m-1)( x)+ hL〜(-1)[H(x)R_m [(→u)_(m-1)]]。(8)这样,我们得到m≥1的u_m处于m阶。具有:u(x)= M∑(m = 1)u_m(x)。(9)查找gs-从获得的结果中可以明显看出,纳米粒子浓度场与具有活化能的化学反应成正比。此外,温度和浓度分布分别是热分层参数和溶解分层参数(P_1)和(P_2)的下降函数。此外,对于更大的布朗运动参数(N_b),不均匀的热源/散热器参数(B_1)和热泳系数(N_t),温度Θ(Ω_1)增大。鉴于(N_b)和(N_t),记述了浓度γ(Ω_1)场的反向行为。还构建了图形和表格来分析不同流量参数对皮肤摩擦系数,局部Nusselt数,Sherwood数,速度,温度和浓度场的影响。原创性/价值-本问题的新颖性是检查粘弹性Walter-B纳米流体模型的Arrhenius活化能现象,该模型具有非线性热辐射,非均匀生热/吸收,非线性混合对流,热和溶液分层等特征。分析了二元化学反应的新颖方面,以表征在Cattaneo-Christov双扩散模型存在下活化能的影响。 Buongiorno的数学模型用于结合由于纳米粒子引起的布朗运动和热泳效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号