首页> 外文期刊>Multidimensional Systems and Signal Processing >Novel methods of DOA estimation based on compressed sensing
【24h】

Novel methods of DOA estimation based on compressed sensing

机译:基于压缩感知的DOA估计新方法

获取原文
获取原文并翻译 | 示例

摘要

Making use of the sparsity of targets, three novel direction of arrival (DOA) models based on compressed sensing (CS) theory are proposed. Covariance matrix CS, interpolated array CS and beam space CS carry out compressive sampling on covariance matrix, interpolated array and beam space, respectively. High-resolution DOA estimations are obtained through reconstruction of sparse signal by convex optimization problem resolution. The proposed methods are conceptually different from subspace-based methods and provide high resolution using a uniform linear array without restricting requirements on the spatial and temporal stationary and correlation properties of the sources and the noise. Results of both simulated data and measured data show that these methods are superior to conventional DOA methods in angular estimation performance.
机译:利用目标的稀疏性,提出了基于压缩感知(CS)理论的三个新颖的到达方向(DOA)模型。协方差矩阵CS,内插数组CS和波束空间CS分别对协方差矩阵,内插数组和波束空间执行压缩采样。通过凸优化问题解决方案重建稀疏信号,可以获得高分辨率的DOA估计。所提出的方法在概念上不同于基于子空间的方法,并使用均匀的线性阵列提供高分辨率,而不会限制对源和噪声的时空平稳性和相关性的要求。仿真数据和实测数据的结果表明,这些方法在角度估计性能方面优于常规的DOA方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号