首页> 外文期刊>Multiagent and grid systems >A new multiagent reinforcement learning algorithm to solve the symmetric traveling salesman problem
【24h】

A new multiagent reinforcement learning algorithm to solve the symmetric traveling salesman problem

机译:解决对称旅行商问题的新型多主体强化学习算法

获取原文
获取原文并翻译 | 示例

摘要

Travelling salesman problem (TSP) looks simple, however it is an important combinatorial problem. Its computational intractability has attracted a number of heuristic approaches to generate satisfactory, if not optimal solutions. In this paper, we present a new algorithm for the Symmetric TSP using Multiagent Reinforcement Learning (MARL) approach. Each agent in the multiagent system is an autonomous entity with personal declarative memory and behavioral components which are used to tour construction and then constructed tour of each agent is improved by 2-opt local search heuristic as tour improvement heuristic in order to reach optimal or near-optimal solutions in a reasonable time. The experiments in this paper are performed using the 29 datasets obtained from the TSPLIB. Also, the experimental results of the proposed method are compared with some well-known methods in the field. Our experimental results indicate that the proposed approach has a good performance with respect to the quality of the solution and the speed of computation.
机译:旅行商问题(TSP)看起来很简单,但这是一个重要的组合问题。它的计算难点吸引了许多启发式方法来生成令人满意的(即使不是最佳的)解决方案。在本文中,我们提出了一种使用多代理强化学习(MARL)方法的对称TSP新算法。多主体系统中的每个主体都是具有个人声明性记忆和行为成分的自治实体,用于巡回构建,然后通过2-opt本地搜索启发式方法(作为巡回改进启发式方法)来改善每个代理的构造巡回状态,以达到最佳或接近-在合理的时间内提供最佳解决方案。本文中的实验是使用从TSPLIB获得的29个数据集进行的。而且,将所提出的方法的实验结果与本领域中一些众所周知的方法进行了比较。我们的实验结果表明,所提出的方法在解决方案的质量和计算速度方面都具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号