首页> 外文期刊>MSDN Magazine >Master Large Data0Streams with Microsoft Stream Insight
【24h】

Master Large Data0Streams with Microsoft Stream Insight

机译:通过Microsoft Stream Insight掌握大型Data0Streams

获取原文
获取原文并翻译 | 示例

摘要

Discovering that the production line has gone down, users' media streams are skipping or one of your products has become a "must have" is easy once it has already happened. The real trick is identifying these scenarios as they happen or even predicting them based on past trends. Successfully predicting scenarios like these requires a near-realtime approach. By the time relevant data is extracted, transformed and loaded into a traditional business intelligence (BI) solution like SQL Server Analysis Services (SSAS), the situation has long since changed. Similarly, any system that relies on a request-response pattern to request updated data from a transactional data store (such as a SQL Server Reporting Services, or SSRS, report) is always operating on stale data near the end of its request-polling interval.
机译:一旦发现生产线已经关闭,用户的媒体流正在跳过或者您的一种产品已成为“必备品”,这很容易做到。真正的诀窍是在发生这些情况时对其进行识别,甚至根据过去的趋势对其进行预测。成功预测此类情况需要近乎实时的方法。到相关数据被提取,转换并加载到传统的商业智能(BI)解决方案(如SQL Server Analysis Services(SSAS))时,这种情况早已改变。同样,任何依赖请求-响应模式从事务数据存储(例如SQL Server Reporting Services或SSRS报告)中请求更新数据的系统,始终在其请求轮询间隔即将结束时对陈旧数据进行操作。 。

著录项

  • 来源
    《MSDN Magazine》 |2011年第6期|p.68-72|共5页
  • 作者

    Rob Pierry;

  • 作者单位

    principal consultant with Captura (capturaonline.com), a consulting company that delivers innovative user experiences backed by scalable technology;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号