首页> 外文期刊>Moscow University Computational Mathematics and Cybernetics >On the Zeros of Cross-Product Bessel Functions in Oblique Derivative Boundary-Value Problems
【24h】

On the Zeros of Cross-Product Bessel Functions in Oblique Derivative Boundary-Value Problems

机译:在倾斜衍生边值问题中跨产物贝塞尔函数的零零

获取原文
获取原文并翻译 | 示例

摘要

Combinations of the cross-products of Bessel functions that arise in oblique derivative boundary-value problems for the Laplace operator in a ring are considered. The behavior of zeros of these functions as the ring thickness tends to zero is studied. It is shown that the zeros are divided into two classes, as in the case of Neumann boundary conditions. Some of them remain finite in the limit, while others become infinitely large. Asymptotic expressions for the zeros are found in the case of a fixed inclination angle of the derivative.
机译:考虑了在环形运营商中倾斜衍生边值问题出现的贝塞尔函数的交叉产品的组合。研究了这些功能的零作为环厚度趋于零的零的行为。结果表明,零被分成两类,如在Neumann边界条件的情况下。其中一些在极限中保持有限,而其他人则变得无限大。在衍生物的固定倾斜角度的情况下发现零的渐性表达。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号