首页> 外文期刊>Monte Carlo Methods and Applications >A Green's function Monte Carlo algorithm for the Helmholtz equation subject to Neumann and mixed boundary conditions: Validation with an ID benchmark problem
【24h】

A Green's function Monte Carlo algorithm for the Helmholtz equation subject to Neumann and mixed boundary conditions: Validation with an ID benchmark problem

机译:适用于Neumann和混合边界条件的Helmholtz方程的格林函数Monte Carlo算法:带有ID基准问题的验证

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present the application of our recently developed Green's function Monte Carlo algorithm to the solution of the one-dimensional Helmholtz equation subject to Neumann and mixed boundary conditions problems. The traditional Green's function Monte Carlo approach for the solution of partial differential equations subjected to Neumann and mixed boundary conditions involves "reflecting boundaries" resulting in relatively large computational times. Our algorithm, motivated by the work of K. K. Sabel-feld is philosophically different in that there is no requirement for reflection at these boundaries. The underlying feature of this algorithm is the elimination of the use of reflecting boundaries through the use of novel Green's functions that mimic the boundary conditions of the problem of interest. In the past, we have applied it to the solution of the one-dimensional Laplace equation and the modified Helmholtz equation. In this work, we apply it to the solution of the Helmholtz equation. In the case of the Helmholtz equation, unlike the Laplace equation and modified Helmholtz equation, the algorithm is constrained to quarter-wavelength length scales, a constraint that is the result of resonance in the Green's function for the Helmholtz equation. This constraint is also present in the case of the Helmholtz equation subjected to Dirichlet conditions and is not specific to Neumann and mixed boundary conditions. However, within this constraint, excellent agreement has been obtained between an analytical solution and numerical results.
机译:在本文中,我们介绍了我们最近开发的格林函数蒙特卡洛算法在一维涉及纽曼和混合边界条件问题的Helmholtz方程解中的应用。传统格林函数蒙特卡洛方法用于求解受Neumann和混合边界条件影响的偏微分方程,涉及“反射边界”,导致计算时间相对较长。由K. K. Sabel-feld的工作激发的我们的算法在哲学上是不同的,因为不需要在这些边界上进行反射。该算法的基本特征是通过使用模仿关注问题的边界条件的新颖格林函数,消除了对反射边界的使用。过去,我们将其应用于一维Laplace方程和修正的Helmholtz方程的解。在这项工作中,我们将其应用于亥姆霍兹方程的解。在亥姆霍兹方程的情况下,与拉普拉斯方程和修正的亥姆霍兹方程不同,该算法被限制在四分之一波长的长度尺度上,这是格林函数对亥姆霍兹方程共振的一种约束。在受到Dirichlet条件影响的Helmholtz方程的情况下,也存在此约束,并且该约束并不特定于Neumann和混合边界条件。但是,在此约束下,解析解和数值结果之间已获得了极好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号