首页> 外文期刊>Monte Carlo Methods and Applications >Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model
【24h】

Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model

机译:并行伪随机数生成器:基于Heston随机波动率模型的衍生定价观点

获取原文
获取原文并翻译 | 示例

摘要

Accuracy and precision of parallel Monte Carlo (MC) simulations may be impaired by the presence of intra-thread and inter-thread correlations depending on the parallel pseudo-random number generators (PPRNGs) used. While necessary, statistical tests alone are insufficient to ensure the absence of these correlations that can manifest as bias and variance to a extent in different applications. Therefore, application-based tests designed to mimic real-life MC scenarios may uncover them in the intended applications. The results of an application-based test simulating the Heston stochastic volatility model, a widely used pricing framework, is reported in order to compare the accuracy and precision profiles among four popular libraries of scalable pseudo-random number generators implementing sequence division (trng and RngSteam), parameterization (sprng) and counter-based (Random123) strategies. All pseudo-random number generators assessed demonstrate similar standard-error of mean profiles. However, the bias profiles are more varied albeit comparable. PPRNGs demonstrating the smallest bias profiles in absolute and relative terms are yarn4 from TRNG, mlf g from SPRNG, as well as Threefry2×64 from Random123 for truncated Euler scheme, and mrg5s from TRNG and lf g from SPRNG for the quadratic exponent scheme. It is recommended that, when selecting a PPRNG for parallel MC simulation from a set of competing PPRNGs with comparable bias and standard error of mean profiles in absolute terms, the PPRNG associated with the smallest parallel-sequential bias difference should be used as it reflects the smallest intra-thread correlation introduced by parallelization.
机译:取决于使用的并行伪随机数生成器(PPRNG),线程内和线程间相关性的存在可能会损害并行蒙特卡洛(MC)模拟的准确性和精度。虽然必要,但仅通过统计检验不足以确保不存在这些相关性,这些相关性在不同的应用程序中可能在一定程度上表现为偏差和方差。因此,旨在模拟实际MC场景的基于应用程序的测试可能会在预期的应用程序中发现它们。报告了基于应用程序的测试结果,该测试结果模拟了广泛使用的定价框架Heston随机波动率模型,目的是比较四个流行的可实现序列划分的可伸缩伪随机数生成器库(trng和RngSteam)的准确性和准确性。 ),参数化(sprng)和基于计数器(Random123)的策略。评估的所有伪随机数生成器均表现出相似的均值轮廓标准误差。但是,偏置曲线变化更大,尽管具有可比性。在绝对和相对方面显示最小偏斜曲线的PPRNG是TRNG的yarn4,SPRNG的mlf g,截短的Euler方案的Random123的Threefry2×64,TRNG的mrg5和SPRNG的平方指数的lf g。建议从一组竞争的PPRNG中选择一个PPRNG进行并行MC仿真时,该PPRNG具有相对的偏差和绝对值均值的标准误差,在绝对方面,应使用与最小并行顺序偏差差相关的PPRNG,因为它反映了并行化引入的最小线程内相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号