首页> 外文期刊>Monte Carlo Methods and Applications >A new proof of geometric convergence for the adaptive generalized weighted analog sampling (GWAS) method
【24h】

A new proof of geometric convergence for the adaptive generalized weighted analog sampling (GWAS) method

机译:自适应广义加权模拟采样(GWAS)方法的几何收敛的新证明

获取原文
获取原文并翻译 | 示例

摘要

Generalized Weighted Analog Sampling is a variance-reducing method for solving radiative transport problems that makes use of a biased (though asymptotically unbiased) estimator. The introduction of bias provides a mechanism for combining the best features of unbiased estimators while avoiding their limitations. In this paper we present a new proof that adaptive GWAS estimation based on combining the variance-reducing power of importance sampling with the sampling simplicity of correlated sampling yields geometrically convergent estimates of radiative transport solutions. The new proof establishes a stronger and more general theory of geometric convergence for GWAS.
机译:广义加权模拟采样是一种用于解决辐射传输问题的方差减少方法,该方法利用了有偏的(尽管渐近无偏)估计量。偏见的引入提供了一种机制,可在避免无偏估计量的局限性的同时将其最佳特征组合在一起。在本文中,我们提出了一个新的证据,即基于重要采样的方差降低能力与相关采样的简单采样相结合的自适应GWAS估计会产生辐射传输解的几何收敛估计。新的证明为GWAS建立了更强大,更通用的几何收敛理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号