首页> 外文期刊>Modelling and simulation in engineering >Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm
【24h】

Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm

机译:基于新型多目标传热搜索算法的半车被动悬架模型的帕累托优化

获取原文
获取原文并翻译 | 示例

摘要

Most of the modern multiobjective optimization algorithms are based on the search technique of genetic algorithms; however the search techniques of other recently developed metaheuristics are emerging topics among researchers. This paper proposes a novel multiobjective optimization algorithm named multiobjective heat transfer search (MOHTS) algorithm, which is based on the search technique of heat transfer search (HTS) algorithm. MOHTS employs the elitist nondominated sorting and crowding distance approach of an elitist based nondominated sorting genetic algorithm-II (NSGA-II) for obtaining different nondomination levels and to preserve the diversity among the optimal set of solutions, respectively. The capability in yielding a Pareto front as close as possible to the true Pareto front of MOHTS has been tested on the multiobjective optimization problem of the vehicle suspension design, which has a set of five second-order linear ordinary differential equations. Half car passive ride model with two different sets of five objectives is employed for optimizing the suspension parameters using MOHTS and NSGA-II. The optimization studies demonstrate that MOHTS achieves the better nondominated Pareto front with the widespread (diveresed) set of optimal solutions as compared to NSGA-II, and further the comparison of the extreme points of the obtained Pareto front reveals the dominance of MOHTS over NSGA-II, multiobjective uniform diversity genetic algorithm (MUGA), and combined PSO-GA based MOEA.
机译:大多数现代的多目标优化算法都是基于遗传算法的搜索技术。然而,其他最近发展的元启发式搜索技术正在成为研究人员中的新兴话题。本文提出了一种新颖的多目标优化算法,称为多目标传热搜索(MOHTS)算法,该算法基于传热搜索(HTS)算法的搜索技术。 MOHTS采用基于精英的非优势排序遗传算法-II(NSGA-II)的精英非优势排序和拥挤距离方法,分别获得不同的非优势级别并保留最优解集之间的多样性。在车辆悬架设计的多目标优化问题上测试了产生尽可能接近MOHTS真实Pareto前沿的Pareto前沿的能力,该问题具有一组五个二阶线性常微分方程。使用具有两个不同的五个目标的半车被动行驶模型,通过MOHTS和NSGA-II优化悬架参数。优化研究表明,与NSGA-II相比,MOHTS通过广泛的(分散的)最优解集获得了更好的非支配的Pareto前沿,并且进一步比较了获得的Pareto前沿的极点,表明MOHTS的优势超过了NSGA-II。 II,多目标统一多样性遗传算法(MUGA),并结合了基于PSO-GA的MOEA。

著录项

  • 来源
    《Modelling and simulation in engineering》 |2017年第2017期|2034907.1-2034907.17|共17页
  • 作者单位

    Mechanical Engineering Department, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India;

    Mechanical Engineering Department, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India;

    Simon Eraser University, Burnaby, BC, Canada;

    Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号