首页> 外文期刊>Mobile networks & applications >Stackelberg Game Based Incentive Mechanisms for Multiple Collaborative Tasks in Mobile Crowdsourcing
【24h】

Stackelberg Game Based Incentive Mechanisms for Multiple Collaborative Tasks in Mobile Crowdsourcing

机译:基于Stackelberg博弈的移动众包中多个协作任务的激励机制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle the problem of stimulating users to join mobile crowdsourcing applications with personal devices such as smartphones and tablets. Wireless personal networks facilitate to exploit the communication opportunity and makes diverse spare-resource of personal devices utilized. However, it is a challenge to motivate sufficient users to provide their resource of personal devices for achieving good quality of service. To address this problem, we propose an incentive framework based on Stackelberg game to model the interaction between the server and users. Traditional incentive mechanisms are applied for either single task or multiple dependent tasks, which fails to consider the interrelation among various tasks. In this paper, we focus on the common realistic scenario with multiple collaborative tasks, where each task requires a group of users to perform collaboratively. Specifically, participants would consider task priority and the server would design suitable reward functions to allocate the total payment. Considering the information of users' costs and the types of tasks, four incentive mechanisms are presented for various cases to the above problem, which are proved to have the Nash equilibrium solutions in all cases for maximizing the utility of the server. Moreover, online incentive mechanisms are further proposed for real time tasks. Through both rigid theoretical analysis and extensive simulations, we demonstrate that the proposed mechanisms have good performance and high computational efficiency in real world applications.
机译:在本文中,我们解决了刺激用户通过智能手机和平板电脑等个人设备加入移动众包应用程序的问题。无线个人网络有助于利用通信机会,并使所使用的个人设备具有多种备用资源。然而,激励足够的用户提供他们的个人设备资源以实现良好的服务质量是一个挑战。为了解决这个问题,我们提出了一个基于Stackelberg游戏的激励框架来对服务器和用户之间的交互进行建模。传统的激励机制适用于单个任务或多个从属任务,而这些激励机制并未考虑各种任务之间的相互关系。在本文中,我们将重点放在具有多个协作任务的常见现实场景上,其中每个任务都需要一组用户来协作执行。具体来说,参与者将考虑任务优先级,服务器将设计合适的奖励功能来分配总付款。考虑到用户成本和任务类型的信息,针对上述问题,提出了针对各种情况的四种激励机制,并在所有情况下都具有Nash均衡解,以最大程度地发挥服务器的效用。此外,针对实时任务进一步提出了在线激励机制。通过严格的理论分析和广泛的仿真,我们证明了所提出的机制在实际应用中具有良好的性能和较高的计算效率。

著录项

  • 来源
    《Mobile networks & applications》 |2016年第3期|506-522|共17页
  • 作者单位

    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Beijing Key Lab Intelligent Telecomm Software & M, Beijing 100876, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile croudsourcing; Multiple collaborative tasks; Incentive mechanism; Stackelberg game;

    机译:移动croudsourcing;多个协作任务;激励机制;Stackelberg游戏;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号