首页> 外文期刊>Mobile networks & applications >Multiservice Load Balancing with Hybrid Particle Swarm Optimization in Cloud-Based Multimedia Storage System with QoS Provision
【24h】

Multiservice Load Balancing with Hybrid Particle Swarm Optimization in Cloud-Based Multimedia Storage System with QoS Provision

机译:基于QoS的基于云的多媒体存储系统中的混合粒子群优化的多服务负载均衡

获取原文
获取原文并翻译 | 示例

摘要

Load balancing is a method of workload distribution across various computers or instruction data centres for maximizing throughput and minimizing work load on resources. To perform load balancing techniques in cloud computing environments, various challenges such as data security, and proper distribution exist which requires serious attention. The most important challenge posed by cloud applicationsis the provision of Quality of Service (QoS) provision as it develops the problem of resource allocation to the application so as to guarantee a service level along dimensions such as performance, availability and reliability. A centralized hierarchical Cloud-based Multimedia System (CMS) consisting of a resource manager, cluster heads, and server clusters is being considered by which the resource manager assigns clients' requests to server clusters for performing multimedia service tasks based on the job features after which each the job is assigned to the servers within its server cluster by the cluster head. Designing an effective load balancing algorithm for CMS however being a complicated and challenging task, enables spreading of multimedia service job load on servers at the minimal cost for transmitting multimedia data between server clusters and clients without exceeding the maximal load limit of each server cluster. In the present work, the Multiple Kernel Learning with Support Vector Machine (MKL-SVM) approach is proposed to quantify the disturbance in the utilization of multiple resources on a resource manager at client side and then verifying at the server side in the each cluster. Also, Fuzzy Simple Additive Weighting (FSAW) method is introduced for QoS provision for improving the system performance. The proposed model CMSdynMLB serves as the multiservice load balancing while considering the integer linear programming problem having unevenness measurement. In order to solve the problem of dynamic load balancing, Hybrid Particle Swarm Optimization (HSPO) is proposed as it holds well for dynamic problems. From the simulation results, it is determined that proposed MKL-SVM algorithm can efficiently manage the dynamic multiservice load balancing.
机译:负载平衡是一种在各种计算机或指令数据中心之间分配工作负载的方法,用于最大化吞吐量和最小化资源上的工作负载。为了在云计算环境中执行负载平衡技术,存在各种挑战,例如数据安全性和正确分发,这需要引起高度重视。云应用程序所面临的最重要挑战是提供服务质量(QoS)条款,因为它发展了为应用程序分配资源的问题,以确保沿性能,可用性和可靠性等维度提供服务水平。正在考虑由资源管理器,群集头和服务器群集组成的集中式基于层次的基于云的多媒体系统(CMS),资源管理器通过该系统,根据作业功能将客户端的请求分配给服务器群集,以执行多媒体服务任务群集头将每个作业分配给其服务器群集中的服务器。然而,为CMS设计有效的负载平衡算法是一项复杂而艰巨的任务,它能够以最小的成本在服务器群集和客户端之间传输多媒体数据的情况下,在服务器上分散多媒体服务作业负载,而不会超出每个服务器群集的最大负载限制。在当前的工作中,提出了使用支持向量机的多核学习(MKL-SVM)方法来量化客户端资源管理器上多个资源使用中的干扰,然后在每个群集的服务器端进行验证。此外,引入了模糊简单可加加权(FSAW)方法来提供QoS,以提高系统性能。在考虑具有不均一性度量的整数线性规划问题的同时,提出的模型CMSdynMLB可以作为多服务负载平衡。为了解决动态负载均衡的问题,提出了混合粒子群算法(HSPO),因为它很好地解决了动态问题。从仿真结果可以确定,提出的MKL-SVM算法可以有效地管理动态多服务负载平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号