首页> 外文期刊>Mobile networks & applications >The Recommendation System of Micro-Blog Topic Based on User Clustering
【24h】

The Recommendation System of Micro-Blog Topic Based on User Clustering

机译:基于用户聚类的微博主题推荐系统

获取原文
获取原文并翻译 | 示例

摘要

As a type of crowdsensing media, micro-blog has become an important crowdsensing place for a lot of real-time information dissemination and discussion. With the increasing of micro-blog users, there are more and more new topics emerging on this kind of platform, which has made the users difficult in finding out their own interesting topics. To solve this problem, this paper proposes a micro-blog topic recommendation system which can give corresponding suggestions/strategies for users. Firstly, the user relationship (i.e., a user adds a follow hyperlink to another user) in micro-blog can be effectively analyzed and saved to the user graph. In addition, an algorithm of computing user authority (which is similar to the idea of PageRank) is proposed to catch influential users based on the built user graph. Secondly, Topic Feature Graph (TFG) and User Micro-blog Feature Graph (UMFG) are respectively constructed based on the micro-blog text corpus of a topic and the micro-blog texts followed by a given user. Based on TFG and UMFG, User Topic Feature Vector (UTFV) and User Topic Feature Matrix (UTFM) can be achieved. After that, users' similarity is calculated based on the User Topic Feature Vector and User Topic Feature Matrix to realize the users clustering by the help of the hierarchical clustering algorithm. Incorporating topic heat degree and user authority, the recommendation algorithm is presented to realize Micro-blog topic personalized recommendation within user clustering set. Experiments show that our proposed recommendation system has a good accuracy which is up to 50.2%.
机译:作为一种人群感知媒体,微博客已成为许多实时信息传播和讨论的重要人群感知场所。随着微博用户的增加,在这种平台上出现了越来越多的新话题,这使得用户很难找到自己感兴趣的话题。为了解决这个问题,本文提出了一种微博主题推荐系统,可以为用户提供相应的建议/策略。首先,可以有效地分析微博中的用户关系(即,用户向另一个用户添加关注超链接)并将其保存到用户图。另外,提出了一种计算用户权限的算法(类似于PageRank的思想),以基于已建立的用户图来捕获有影响力的用户。其次,分别基于主题的微博文本语料库和给定用户所遵循的微博文本,分别构建主题特征图(TFG)和用户微博特征图(UMFG)。基于TFG和UMFG,可以实现用户主题特征向量(UTFV)和用户主题特征矩阵(UTFM)。然后,基于用户主题特征向量和用户主题特征矩阵计算用户相似度,并借助层次聚类算法实现用户聚类。结合话题热度和用户权限,提出了一种推荐算法,可以在用户聚类集中实现微博话题个性化推荐。实验表明,我们提出的推荐系统具有较高的准确性,可达50.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号