首页> 外文期刊>Mobile networks & applications >Linearization of RF Power Amplifiers in Wideband Communication Systems by Adaptive Indirect Learning Using RPEM Algorithm
【24h】

Linearization of RF Power Amplifiers in Wideband Communication Systems by Adaptive Indirect Learning Using RPEM Algorithm

机译:RPEM算法自适应间接学习宽带通信系统中RF功率放大器的线性化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new approach of digital predistortion (DPD) technique based on the adaptive indirect learning architecture (ILA) by using a recursive prediction error minimization (RPEM) algorithm for linearizing radio frequency (RF) power amplifiers (PAs) in emerging wideband communication systems. In the proposed RPEM-based linearization approach, the forgetting factor varies with time and is less sensitive to noise. Therefore, the predistorter (PD) parameter estimates become more consistent and accurate in steady state so that the mean square errors can be reduced. Both the error vector magnitude (EVM) and the adjacent channel power ratio (ACPR) are used to evaluate the DPD technique in RF PAs employing the proposed linearization. The efficiency validation of the proposed method is based on a simulated PA Wiener model. The simulation results have clarified the improvement of the proposed adaptive ILA-based DPD with RPEM algorithm in terms of both EVM and ACPR.
机译:本文通过使用递归预测误差最小化(RPEM)算法在新出现的宽带通信中,基于自适应间接学习架构(ILA)的基于自适应间接学习架构(ILA)的基于自适应间接学习架构(RPEM)算法,提出了一种新的数字预失真(DPD)技术方法系统。在所提出的基于RPEM的线性化方法中,遗忘因子随时间而变化,对噪声不太敏感。因此,预失真器(PD)参数估计变得更加一致,稳态变得更加一致,使得可以减小平均方形误差。误差矢量幅度(EVM)和相邻信道功率比(ACPR)都用于评估采用所提出的线性化的RF PAS中的DPD技术。所提出的方法的效率验证是基于模拟PA维纳模型。仿真结果阐明了在EVM和ACPR方面具有RPEM算法的提出的自适应ILA的DPD的改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号