首页> 外文期刊>Mobile networks & applications >Green Computing Process and its Optimization Using Machine Learning Algorithm in Healthcare Sector
【24h】

Green Computing Process and its Optimization Using Machine Learning Algorithm in Healthcare Sector

机译:使用机器学习算法在医疗保健部门的绿色计算过程及其优化

获取原文
获取原文并翻译 | 示例

摘要

Handling the information is crucial task in healthcare sector; the data mining techniques will be right choice to address the complex problems. The hybridized optimization techniques in big data analytics consider the important part of the healthcare network communication issues in decision making approach of patient information. This article focused on heart disease data mining and relevant issues since the heart diseases are considered as a reason for causing deaths just as for males and females all over the world. So, people need to be conscious of possible aspects of heart disease. Even though genetics has a part, some of the standards of living practiced are the fundamental reasons for the heart disease. The heart diseases are classified by classical techniques with 13 risk factors and helpful variables. The introduced approach delivers a new computing hybrid modeling scheme for detect the heart diseases. This study represents, various existing methods making decisions for cardio vascular risks depends on the artificial neural networks (ANN). This ANN based methods generally anticipated that Heart Failure attributes having same risk involvement to the heart failure diagnosis. In this article the strategy of an effective recognition method is analyzed for analyzing the failure related to heart diseases using a hybridized approach of K-Nearest Neighbor clustering and Spiral optimization in the classification of the cardio vascular risks. The hybridized KNN technique is matched with some data mining techniques like Support vector Machine (SVM), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN). The experimental results of this work achieved optimized improved results significantly than other machine learning techniques. The illustrative results exposed that the hybrid scheme stated effectually classify heart disease in the way of computing optimized prediction of heart diseases. Overall the proposed algorithm evidence 5% of enhancement in prediction of heart diseases with comparison of other existing machine learning techniques.
机译:处理信息是医疗保健部门的重要任务;数据挖掘技术将是解决复杂问题的正确选择。大数据分析中的杂交优化技术考虑了患者信息决策方法中医疗网络通信问题的重要组成部分。本文重点是心脏病数据挖掘和相关问题,因为心脏病被视为导致死亡的原因,就像世界各地的男性和女性一样。因此,人们需要意识到心脏病的可能方面。尽管遗传学有一部分,但一些生活方式的实践标准是心脏病的根本原因。心脏病通过经典技术进行分类,具有13个危险因素和有用的变量。引入的方法提供了一种新的计算混合建模方案,用于检测心脏病。本研究代表,各种现有方法为有氧血管风险做出决定取决于人工神经网络(ANN)。该基于ANN的方法通常预期具有相同风险涉及心力衰竭诊断的心力衰竭属性。在本文中,分析了有效识别方法的策略,用于使用杂交的K最近邻聚类和螺旋优化在心血管风险的分类中分析与心脏病有关的失败。杂交的KNN技术与支持向量机(SVM),卷积神经网络(CNN)和人工神经网络(ANN)的一些数据挖掘技术匹配。这项工作的实验结果实现了优化的改进结果,显着比其他机器学习技术显着。说明性结果暴露了杂交方案在计算心脏病优化预测的方式中有效地分类心脏病。总体而言,该算法证据证据了5%的患者预测心脏病预测,与其他现有机器学习技术的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号