首页> 外文期刊>Mobile networks & applications >Road Boundaries Detection based on Modified Occupancy Grid Map Using Millimeter-wave Radar
【24h】

Road Boundaries Detection based on Modified Occupancy Grid Map Using Millimeter-wave Radar

机译:基于使用毫米波雷达的修改占用网格图的道路边界检测

获取原文
获取原文并翻译 | 示例

摘要

Road region detection is a hot spot research topic in autonomous driving field. It requires to give consideration to accuracy, efficiency as well as prime cost. In that, we choose millimeter-wave (MMW) Radar to fulfill road detection task, and put forward a novel method based on MMW which meets real-time requirement. In this paper, a dynamic and static obstacle distinction step is firstly conducted to estimate the dynamic obstacle interference on boundary detection. Then, we generate an occupancy grid map using modified Bayesian prediction to construct a 2D driving environment model based on static obstacles, while a clustering procedure is carried out to describe dynamic obstacles. Next, a Modified Random Sample Consensus (Modified RANSAC) algorithm is presented to estimate candidate road boundaries from static obstacle maps. Results of our experiments are presented and discussed at the end. Note that, all our experiments in this paper are run in real-time on an experimental UGV (unmanned ground vehicle) platform equipped with Continental ARS 408-21 radar.
机译:道路区检测是自动驾驶场中的热点研究课题。它需要考虑准确性,效率和主要成本。在此,我们选择毫米波(MMW)雷达来实现道路检测任务,并提出了一种基于MMW的新方法,符合实时要求。在本文中,首先进行动态和静态障碍物区别步骤以估计边界检测的动态障碍干扰。然后,我们使用修改的贝叶斯预测生成占用网格图,以构建基于静态障碍的2D驾驶环境模型,而进行聚类过程以描述动态障碍物。接下来,提出了修改的随机样本共识(修改的RANSAC)算法以估计静态障碍地图的候选道路边界。我们的实验结果在最后介绍和讨论过。注意,本文的所有实验都是实时运行的,在配备大陆Ars 408-21雷达的实验UGV(无人面的地面车辆)平台上运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号