首页> 外文期刊>Mobile networks & applications >Detection of Circulating Tumor Cells in Fluorescence Microscopy Images Based on ANN Classifier
【24h】

Detection of Circulating Tumor Cells in Fluorescence Microscopy Images Based on ANN Classifier

机译:基于ANN分类器的荧光显微镜图像中循环肿瘤细胞的检测

获取原文
获取原文并翻译 | 示例

摘要

Circulating tumor cells (CTCs) is a clinical biomarker for cancer metastasis. CTCs are cells circulating in the body of patients by being separated from primary cancer and entering into blood vessel. CTCs spread every positions in the body, and this is one of the cause of cancer metastasis. To analyze them, pathologists get information about metastasis without invasive test. CTCs test is conducted by analyzing the blood sample from patient. The fluorescence microscope generates a large number of images per each sample, and images contain a lot of cells. There are only a few CTCs in images and cells often have blurry boundaries. So CTCs identification is not an easy work for pathologists. In this paper, we develop an automatic CTCs identification method in fluorescence microscopy images. This proposed method has three section. In the first approach, we conduct the cell segmentation in images by using filtering methods. Next, we compute feature values from each CTC candidate region. Finally, we identify CTCs using artificial neural network algorithm. We apply the proposed method to 5895 microscopy images (7 samplesas), and evaluate the effectiveness of our proposed method by using leave-one-out cross validation. We achieve the result of performance tests, a true positive rate is 92.57% and false positive rate is 9.156%.
机译:循环肿瘤细胞(CTC)是癌症转移的临床生物标志物。 CTCS是通过与原发性癌分离并进入血管体内患者体内的细胞。 CTCS在体内传播每个职位,这是癌症转移的原因之一。要分析它们,病理学家可以在没有侵入性测试的情况下获取有关转移的信息。通过分析来自患者的血液样品进行CTCS测试。荧光显微镜根据每个样本产生大量图像,并且图像包含大量细胞。图像中只有少数CTC,并且细胞通常具有模糊边界。因此,CTCS识别不是病理学家的简单工作。在本文中,我们在荧光显微镜图像中开发了一种自动CTCS识别方法。这种提出的方​​法有三个部分。在第一种方法中,我们使用过滤方法在图像中进行单元分割。接下来,我们计算来自每个CTC候选区域的特征值。最后,我们使用人工神经网络算法识别CTC。我们将所提出的方法应用于5895显微镜图像(7个样本),并通过使用休假交叉验证来评估我们提出的方法的有效性。我们实现了性能测试的结果,真正的阳性率为92.57%,假阳性率为9.156%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号