首页> 外文期刊>Mobile networks & applications >SAFER: Crowdsourcing Based Disaster Monitoring System Using Software Defined Fog Computing
【24h】

SAFER: Crowdsourcing Based Disaster Monitoring System Using Software Defined Fog Computing

机译:SAFER:使用软件定义的雾计算的基于众包的灾难监测系统

获取原文
获取原文并翻译 | 示例

摘要

In the occurrence of natural or artificial disasters, conveying immediate and precise situation awareness (SA) information from the salient disaster scenes to the first responders is vital. Crowdsourcing can offer enormous heterogeneous data collected from diverse sources such as sensors, smartphones, vehicles, IoT devices, buildings, and social media. Sending the crowdsourced SA data to the Cloud for analyzation is futile as the opportunity to act immediately may be lost due to delay constraints. However, analyzation of the data-intensive and media-rich contents impose accessibility to massive computational resources, which may be unresponsive in the disaster zone. Fog computing allows quick analyzation of the heterogeneous SA data on the site closer to the disaster scene. This article describes an architecture named SAFER (SDN Assisted Fog computing for Emergency Resilience) which provisions Fog computing and Software-Defined Networking for efficient disaster management. We evaluated the SAFER architecture using simulation tools consuming heterogeneous data and verified that better Quality of Service is achieved by reducing the Service Delay in both transmission and computation. Using SAFER architecture disasters can be detected early than conventional Cloud-based disaster management schemes so that more human lives can be saved.
机译:在发生自然或人为灾难时,将重要灾害现场的即时准确的态势感知(SA)信息传达给第一响应者至关重要。众包可以提供从各种来源(例如传感器,智能手机,车辆,IoT设备,建筑物和社交媒体)收集的大量异构数据。将众包的SA数据发送到Cloud进行分析是徒劳的,因为延迟的限制可能会失去立即采取行动的机会。但是,对数据密集型和媒体丰富的内容的分析使人们无法访问大量的计算资源,这在灾区可能没有响应。雾计算可以快速分析更接近灾难现场的站点上的异构SA数据。本文介绍了一种名为SAFER(用于紧急应变的SDN辅助雾计算)的体系结构,该体系结构提供了雾计算和软件定义的网络以进行有效的灾难管理。我们使用消耗异类数据的仿真工具评估了SAFER体系结构,并验证了通过减少传输和计算中的服务延迟可以实现更好的服务质量。使用SAFER体系结构,可以比传统的基于云的灾难管理方案更早地发现灾难,从而可以挽救更多的生命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号