首页> 外文期刊>Mobile Information Systems >Consumers Team Detection Model Based on Trust for Multi-Level
【24h】

Consumers Team Detection Model Based on Trust for Multi-Level

机译:基于信任的多层次消费者团队检测模型

获取原文
获取原文并翻译 | 示例

摘要

Due to rapid advances in technology, social networks have become important platforms for daily communication, product marketing, and information dissemination. Targeted delivery of social network advertisement can considerably improve the efficacy of the advertisement and maximize the profits from it. In this context, managing the specific audience of a social network advertisement and achieving targeted advertisement delivery have been the ultimate goals of the social network advertising sector. Identifying user groups with similar properties is critical to increasing targeted sales. When both the scale of mobile social network and the coplexity of social network user behaviors grow, similar groups are hidden in user behaviors. In order to analyze community structure with user trust relationship more appropriately in the large-scale multilevel social network environment, a novel local community detection model E-MLCD is proposed in this paper. It is jointly based on the multilevel properties and the strength of similarity of multilevel social interaction among communities. By studying three real-world multilevel social networks and specific QQ Zone marketing data, the model defines a new metric of community trust based on similarity. Comparison between other state-of-the-art detection methods demonstrate E-MLCD's ability to detect communities more effectively.
机译:由于技术的飞速发展,社交网络已成为日常交流,产品营销和信息传播的重要平台。社交网络广告的目标投放可以极大地提高广告的效率,并从中获得最大的利润。在这种情况下,管理社交网络广告的特定受众并实现目标广告投放已成为社交网络广告行业的最终目标。确定具有相似属性的用户组对于增加目标销售量至关重要。当移动社交网络的规模和社交网络用户行为的复杂性都增加时,相似的群体就会隐藏在用户行为中。为了在大规模的多层次社交网络环境中更恰当地分析具有用户信任关系的社区结构,提出了一种新颖的本地社区检测模型E-MLCD。它共同基于社区之间的多级属性和多级社会互动的相似性强度。通过研究三个现实世界的多层社交网络和特定的QQ区域营销数据,该模型基于相似性定义了一种新的社区信任度量。其他最新检测方法之间的比较表明,E-MLCD能够更有效地检测社区。

著录项

  • 来源
    《Mobile Information Systems》 |2019年第1期|4147859.1-4147859.10|共10页
  • 作者单位

    Tianjin Univ Sch Comp Sci & Technol Tianjin Peoples R China|Zaozhuang Univ Sch Informat Sci & Engn Zaozhuang Shandong Peoples R China;

    Tianjin Univ Sch Comp Sci & Technol Tianjin Peoples R China;

    Univ Technol Mauritius Sch Innovat Technol & Engn Pointe Aux Sables Mauritius;

    Shanghai Univ Comp Ctr Shanghai Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号