首页> 外文期刊>IEEE transactions on mobile computing >Autonomous UAV Trajectory for Localizing Ground Objects: A Reinforcement Learning Approach
【24h】

Autonomous UAV Trajectory for Localizing Ground Objects: A Reinforcement Learning Approach

机译:自主UAV轨迹,用于定位地面对象:加强学习方法

获取原文
获取原文并翻译 | 示例

摘要

Disaster management, search and rescue missions, and health monitoring are examples of critical applications that require object localization with high precision and sometimes in a timely manner. In the absence of the global positioning system (GPS), the radio received signal strength index (RSSI) can be used for localization purposes due to its simplicity and cost-effectiveness. However, due to the low accuracy of RSSI, unmanned aerial vehicles (UAVs) or drones may be used as an efficient solution for improved localization accuracy due to their agility and higher probability of line-of-sight (LoS). Hence, in this context, we propose a novel framework based on reinforcement learning (RL) to enable a UAV (agent) to autonomously find its trajectory that results in improving the localization accuracy of multiple objects in shortest time and path length, fewer signal-strength measurements (waypoints), and/or lower UAV energy consumption. In particular, we first control the agent through initial scan trajectory on the whole region to 1) know the number of nodes and estimate their initial locations, and 2) train the agent online during operation. Then, the agent forms its trajectory by using RL to choose the next waypoints in order to minimize the average location errors of all objects. Our framework includes detailed UAV to ground channel characteristics with an empirical path loss and log-normal shadowing model, and also with an elaborate energy consumption model. We investigate and compare the localization precision of our approach with existing methods from the literature by varying the UAV's trajectory length, energy, number of waypoints, and time. Furthermore, we study the impact of the UAV's velocity, altitude, hovering time, communication range, number of maximum RSSI measurements, and number of objects. The results show the superiority of our method over the state-of-art and demonstrates its fast reduction of the localization error.
机译:灾害管理,搜索和救援任务以及健康监测是需要具有高精度的对象本地化的关键应用程序的示例,有时以及时的方式。在没有全球定位系统(GPS)的情况下,由于其简单性和成本效益,无线电接收信号强度指数(RSSI)可用于定位目的。然而,由于RSSI的精度低,无人驾驶飞行器(无人机)或无人机可以用作改善本地化精度的有效解决方案,因为它们的敏捷性和视线线的较高概率(LOS)。因此,在这种情况下,我们提出了一种基于加强学习(RL)的新颖框架,以使UAV(代理)自主地找到其轨迹,导致在最短的时间和路径长度中提高多个对象的定位精度,更少的信号 - 强度测量(航点)和/或降低无人机能量消耗。特别是,我们首先通过整个区域上的初始扫描轨迹控制代理到1)知道节点的数量并估计其初始位置,而2)在操作期间在线培训代理。然后,通过使用RL选择其轨迹来选择下一个航点以最小化所有对象的平均位置误差。我们的框架包括具有经验性路径损耗和对数正常遮蔽模型的地面通道特性的详细的无人机特性,以及精心制作的能耗模型。我们通过改变无人机的轨迹长度,能量,航点数和时间来调查和比较我们对文献中现有方法的本地化精度。此外,我们研究了UAV的速度,高度,悬停时间,通信范围,最大RSSI测量数和对象数量的影响。结果表明,我们对最先进的方法的优势,并证明了其对本地化误差的快速降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号