首页> 外文期刊>IEEE transactions on mobile computing >AdSherlock: Efficient and Deployable Click Fraud Detection for Mobile Applications
【24h】

AdSherlock: Efficient and Deployable Click Fraud Detection for Mobile Applications

机译:Adsherlock:高效和可部署单击移动应用程序的欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

Mobile advertising plays a vital role in the mobile app ecosystem. A major threat to the sustainability of this ecosystem is click fraud, i.e., ad clicks performed by malicious code or automatic bot problems. Existing click fraud detection approaches focus on analyzing the ad requests at the server side. However, such approaches may suffer from high false negatives since the detection can be easily circumvented, e.g., when the clicks are behind proxies or globally distributed. In this paper, we present AdSherlock, an efficient and deployable click fraud detection approach at the client side (inside the application) for mobile apps. AdSherlock splits the computation-intensive operations of click request identification into an offline procedure and an online procedure. In the offline procedure, AdSherlock generates both exact patterns and probabilistic patterns based on URL (Uniform Resource Locator) tokenization. These patterns are used in the online procedure for click request identification and further used for click fraud detection together with an ad request tree model. We implement a prototype of AdSherlock and evaluate its performance using real apps. The online detector is injected into the app executable archive through binary instrumentation. Results show that AdSherlock achieves higher click fraud detection accuracy compared with state of the art, with negligible runtime overhead.
机译:移动广告在移动应用程序生态系统中发挥着重要作用。对该生态系统可持续性的主要威胁是点击欺诈,即通过恶意代码或自动机器人问题执行的广告点击。现有的单击欺诈检测方法专注于分析服务器端的广告请求。然而,这种方法可能遭受高假否定的,因为检测可以容易地避免,例如,当点击后面是代理或全局分布时。在本文中,我们在客户端(应用程序内)提供了Adsherlock,有效和可部署的欺诈检测方法,用于移动应用程序。 Adsherlock将单击请求标识的计算密集型操作分配为脱机过程和在线过程。在离线过程中,Adsherlock基于URL(统一资源定位器)标记生成精确的模式和概率模式。这些模式用于单击请求标识的在线过程中,并进一步与AD请求树模型一起单击欺诈检测。我们实现了Adsherlock的原型,并使用真实应用评估其性能。通过二进制仪器将在线检测器注入应用程序可执行文件。结果表明,与现有技术相比,Adsherlock实现了更高的欺诈检测精度,运行时占用了可忽略不计的。

著录项

  • 来源
    《IEEE transactions on mobile computing》 |2021年第4期|1285-1297|共13页
  • 作者单位

    Zhejiang Univ Coll Comp Sci Hangzhou 310027 Zhejiang Peoples R China|Alibaba Zhejiang Univ Joint Inst Frontier Technol Hangzhou 310027 Zhejiang Peoples R China|Shanghai Univ Sch Comp Engn & Sci Shanghai Inst Adv Commun & Data Sci Shanghai 200444 Peoples R China;

    Zhejiang Univ Coll Comp Sci Hangzhou 310027 Zhejiang Peoples R China|Alibaba Zhejiang Univ Joint Inst Frontier Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Comp Sci Hangzhou 310027 Zhejiang Peoples R China|Alibaba Zhejiang Univ Joint Inst Frontier Technol Hangzhou 310027 Zhejiang Peoples R China;

    McGill Univ Sch Comp Sci Montreal PQ H3A 0G4 Canada;

    Zhejiang Univ Coll Comp Sci Hangzhou 310027 Zhejiang Peoples R China|Alibaba Zhejiang Univ Joint Inst Frontier Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Comp Sci Hangzhou 310027 Zhejiang Peoples R China|Alibaba Zhejiang Univ Joint Inst Frontier Technol Hangzhou 310027 Zhejiang Peoples R China;

    McGill Univ Sch Comp Sci Montreal PQ H3A 0G4 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Advertising; Detectors; Mobile applications; Ecosystems; Tools; Instruments; Mobile computing; Click fraud detection; mobile advertising; ad requests identification;

    机译:广告;探测器;移动应用;生态系统;工具;仪器;移动计算;点击欺诈检测;移动广告;广告请求识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号