首页> 外文期刊>IEEE transactions on mobile computing >Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach
【24h】

Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach

机译:移动边缘计算中的延时感知微服务协调:强化学习方法

获取原文
获取原文并翻译 | 示例

摘要

As an emerging service architecture, microservice enables decomposition of a monolithic web service into a set of independent lightweight services which can be executed independently. With mobile edge computing, microservices can be further deployed in edge clouds dynamically, launched quickly, and migrated across edge clouds easily, providing better services for users in proximity. However, the user mobility can result in frequent switch of nearby edge clouds, which increases the service delay when users move away from their serving edge clouds. To address this issue, this article investigates microservice coordination among edge clouds to enable seamless and real-time responses to service requests from mobile users. The objective of this work is to devise the optimal microservice coordination scheme which can reduce the overall service delay with low costs. To this end, we first propose a dynamic programming-based offline microservice coordination algorithm, that can achieve the globally optimal performance. However, the offline algorithm heavily relies on the availability of the prior information such as computation request arrivals, time-varying channel conditions and edge cloud's computation capabilities required, which is hard to be obtained. Therefore, we reformulate the microservice coordination problem using Markov decision process framework and then propose a reinforcement learning-based online microservice coordination algorithm to learn the optimal strategy. Theoretical analysis proves that the offline algorithm can find the optimal solution while the online algorithm can achieve near-optimal performance. Furthermore, based on two real-world datasets, i.e., the Telecom's base station dataset and Taxi Track dataset from Shanghai, experiments are conducted. The experimental results demonstrate that the proposed online algorithm outperforms existing algorithms in terms of service delay and migration costs, and the achieved performance is close to the optimal performance obtained by the offline algorithm.
机译:作为新兴服务架构,微服务可以将单片Web服务分解成一组独立执行的独立轻量级服务。利用移动边缘计算,可以动态地在边缘云中进一步部署微服务,快速启动,并轻松迁移边缘云,为用户提供更好的服务。但是,用户移动性可能导致附近的边缘云频繁切换,当用户远离服务边缘云时,将增加服务延迟。要解决此问题,本文调查了边缘云之间的微服务协调,以便为来自移动用户的服务请求提供无缝和实时响应。这项工作的目的是设计最佳的微服务协调方案,可以降低低成本的整体服务延误。为此,我们首先提出了一种基于动态编程的离线微服务协调算法,可以实现全球最佳性能。然而,离线算法严重依赖于所需信息的可用性,例如计算请求到达,时变信道条件和所需的边缘云的计算能力,这是难以获得的。因此,我们使用马尔可夫决策过程框架重构微服务协调问题,然后提出基于加强学习的在线微服务协调算法,以了解最佳策略。理论分析证明,离线算法可以找到最佳解决方案,而在线算法可以实现近最佳性能。此外,基于两个现实世界数据集,即电信的基站数据集和来自上海的出租车跟踪数据集,进行了实验。实验结果表明,所提出的在线算法在服务延迟和迁移成本方面优于现有的算法,并且实现的性能接近离线算法获得的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号