首页> 外文期刊>Computer networks >Edge intelligence computing for mobile augmented reality with deep reinforcement learning approach
【24h】

Edge intelligence computing for mobile augmented reality with deep reinforcement learning approach

机译:具有深度增强学习方法的移动增强现实的边缘智能计算

获取原文
获取原文并翻译 | 示例

摘要

Convergence of Augmented Reality (AR) and Next Generation Internet-of-Things (NG-IoT) can create new opportunities in many emerging areas, where the real-time data can be visualized on the devices. Integrated NG-IoT network, AR can improve efficiency in many fields such as mobile computing, smart city, intelligent transportation and telemedicine. However, limited by capability of mobile device, the reliability and latency requirements of AR applications is difficult to meet by local processing. To solve this problem, we study a binary offloading scheme for AR edge computing. Based on the proposed model, the parts of AR computing can offload to edge network servers, which is extend the computing capability of mobile AR devices. Moreover, a deep reinforcement learning offloading model is considered to acquire B5G network resource allocation and optimally AR offloading decisions. First, this offloading model does not need to solve combinatorial optimization, which is greatly reduced the computational complexity. Then the wireless channel gains and binary offloading states is modeled as a Markov decision process, and solved by deep reinforcement learning. Numerical results show that our scheme can achieve better performance compared with existing optimization methods.
机译:增强现实(AR)和下一代内容(NG-IOT)的融合可以在许多新兴领域创造新的机会,其中可以在设备上可视化实时数据。集成的NG-IOT网络,AR可以提高许多领域的效率,如移动计算,智能城市,智能交通和远程医疗等。然而,通过移动设备的能力的限制,AR应用的可靠性和延迟要求难以通过本地处理满足。为了解决这个问题,我们研究了AR Edge Computing的二进制卸载方案。基于所提出的模型,AR计算的部分可以卸载到边缘网络服务器,这延长了移动AR设备的计算能力。此外,考虑了深度加强学习卸载模型,用于获取B5G网络资源分配和最佳的AR卸载决策。首先,该卸载模型不需要解决组合优化,这大大降低了计算复杂性。然后,无线频道增益和二进制卸载状态被建模为马尔可夫决策过程,并通过深增强学习解决。数值结果表明,与现有的优化方法相比,我们的方案可以实现更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号