首页> 外文期刊>IEEE transactions on mobile computing >JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services
【24h】

JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services

机译:诚意:智能移动云计算服务的高效培训和推理引擎

获取原文
获取原文并翻译 | 示例

摘要

Deep learning models are being deployed in many mobile intelligent applications. End-side services, such as intelligent personal assistants, autonomous cars, and smart home services often employ either simple local models on the mobile or complex remote models on the cloud. However, recent studies have shown that partitioning the DNN computations between the mobile and cloud can increase the latency and energy efficiencies. In this paper, we propose an efficient, adaptive, and practical engine, JointDNN, for collaborative computation between a mobile device and cloud for DNNs in both inference and training phase. JointDNN not only provides an energy and performance efficient method of querying DNNs for the mobile side but also benefits the cloud server by reducing the amount of its workload and communications compared to the cloud-only approach. Given the DNN architecture, we investigate the efficiency of processing some layers on the mobile device and some layers on the cloud server. We provide optimization formulations at layer granularity for forward- and backward-propagations in DNNs, which can adapt to mobile battery limitations and cloud server load constraints and quality of service. JointDNN achieves up to 18 and 32 times reductions on the latency and mobile energy consumption of querying DNNs compared to the status-quo approaches, respectively.
机译:深入学习模型正在许多移动智能应用程序中部署。终端服务,如智能个人助理,自主汽车和智能家居服务通常在云上的移动或复杂的远程模型上使用简单的本地模型。然而,最近的研究表明,将移动和云之间的DNN计算分区可以增加延迟和能量效率。在本文中,我们提出了一种高效,自适应和实用的发动机,在推理和训练阶段中的移动设备和云之间的用于移动设备和云之间的协作计算。康迪纳不仅提供了用于移动侧的DNN的能量和性能有效方法,而且还通过减少与云的方法相比减少其工作量和通信量的云服务器。鉴于DNN架构,我们调查在移动设备上处理一些层的效率以及云服务器上的一些图层。我们为DNN中的前向和后向传播提供优化配方,可以适应移动电池限制和云服务器负载约束和服务质量。与状态 - QUO方法相比,联合署在查询DNN的延迟和移动能耗降低了18至32倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号