首页> 外文期刊>IEEE transactions on mobile computing >Becoming Smarter at Characterizing Potholes and Speed Bumps from Smartphone Data — Introducing a Second-Generation Inference Problem
【24h】

Becoming Smarter at Characterizing Potholes and Speed Bumps from Smartphone Data — Introducing a Second-Generation Inference Problem

机译:在智能手机数据中表征坑洼和速度颠簸时变得更聪明 - 引入第二代推理问题

获取原文
获取原文并翻译 | 示例

摘要

Much has been said regarding the automatic identification of roadway obstacles by analyzing data collected from inertial sensors either fixed to the vehicle or embedded into the drivers' smartphones. Literature is vast in models to, given a record of sensor readings, determine if the sample corresponds to a pothole or speed bump, even with scores beyond 90% in performance. Acknowledging this advance, this article considers the next-generation version of this problem. Specifically, we investigate questions such as: what physical properties of roadway obstacles could be inferred from the same sensor readings? or, what are the best schemes to model this profile problem? To approach these questions we built the first obstacle-detailed data set that is composed of accelerometer and gyroscope readings of 163 potholes and 101 speed bumps. This data set is the first of its kind, since it specifies ground truth labels that correspond to potholes' depths and also, functional status (OK - Not OK) for speed bumps. We approach this fine-grained characterization using three different learning schemes, as a Regression, Classification and Learning to Rank tasks. Results are encouraging, reporting a RMSE for pothole's depth prediction of up to 1.68 cm and classification performance of 0.89 in AUC score. In summary, after more than 10 years of analysis, struggles and achievements, it is time for the community to become smarter and start profiling roads with real detail.
机译:通过分析从惯性传感器收集的数据来自动识别道路障碍物,这些都是通过固定在车辆或嵌入驱动器的智能手机中的数据来自动识别道路障碍物。对于传感器读数的记录,文献在模型中是巨大的模型,确定样品是否对应于坑洞或速度凸起,即使在性能超过90%超过90%。本文致力于此提前,考虑了此问题的下一代版本。具体而言,我们调查以下问题:可以从相同的传感器读数推断出巷道障碍物的物理性质吗?或者,模拟此配置文件问题的最佳方案是什么?为了接近这些问题,我们建立了由加速度计和163个坑洼的陀螺仪和101个速度凸起组成的第一个障碍细节数据集。此数据集是第一个,因为它指定了与坑洼深度等对应的地面真理标签,以及速度颠簸的功能状态(OK - 不确定)。我们使用三种不同的学习计划来处理这种细粒度的特征,作为回归,分类和学习对排名任务。结果令人鼓舞,报告了坑洞深度预测的RMSE,高达1.68厘米,分类性能为0.89的AUC分数。总之,经过十多年的分析,挣扎和成就,是时候举办了越来越聪明,并以真实的细节开始分析公路。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号