首页> 外文期刊>Parallel and Distributed Systems, IEEE Transactions on >Bumping: A Bump-Aided Inertial Navigation Method for Indoor Vehicles Using Smartphones
【24h】

Bumping: A Bump-Aided Inertial Navigation Method for Indoor Vehicles Using Smartphones

机译:颠簸:使用智能手机的室内车辆颠簸辅助惯性导航方法

获取原文
获取原文并翻译 | 示例

摘要

Equipped with accelerometers and gyroscopes, modern smartphones provide an appealing approach to infrastructure-free navigation for vehicles in indoor environments (for example parking garages). However, a smartphone-based inertial navigation system (INS) faces two serious problems. First, it is subject to errors that accumulate over time rather quickly, which may grow to a level that renders the navigation meaningless. Second, without human input or external references, the smartphone can hardly infer its initial position/velocity, which is the basis for distance calculation, since all that a smartphone can learn is its acceleration. This raises a practical concern, as users often need to start indoor navigation precisely when they are uncertain of their current whereabouts. In this paper, we present Bumping , a Bump-Aided Inertial Navigation method that significantly alleviates the above two problems. At the core of this method is a Bump Matching algorithm, which exploits the position information of the readily available speed bumps to provide useful references for the INS. The proposed method is easy to implement, requires no infrastructures, and incurs nearly zero extra energy. We conducted real experiments in tree parking garages of different environmental characteristics. The Bumping method produces an average position error of 4-5 m in these scenarios, improving the accuracy by up to 87.1 percent, compared to the basic inertial navigation method.
机译:配备了加速度计和陀螺仪的现代智能手机为室内环境中的车辆(例如停车场)提供了一种引人入胜的无基础设施导航方法。但是,基于智能手机的惯性导航系统(INS)面临两个严重问题。首先,它会随着时间的流逝而积累一些错误,这些错误可能会增长到使导航变得毫无意义的程度。其次,在没有人工输入或外部参考的情况下,智能手机几乎无法推断其初始位置/速度,这是距离计算的基础,因为智能手机可以学习的仅仅是加速度。这引起了实际的关注,因为用户经常在不确定其当前下落时经常需要开始室内导航。在本文中,我们提出了“颠簸”(Bumping),这是一种颠簸辅助的惯性导航方法,可以大大缓解上述两个问题。该方法的核心是凹凸匹配算法,该算法利用随时可用的减速带的位置信息为INS提供有用的参考。所提出的方法易于实施,不需要基础设施,并且产生几乎为零的额外能量。我们在具有不同环境特征的树木停车库中进行了真实的实验。在这种情况下,碰撞法产生的平均位置误差为4-5 m,与基本惯性导航法相比,其精度提高了87.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号