首页> 外文期刊>IEEE transactions on mobile computing >Distributed and Energy-Efficient Mobile Crowdsensing with Charging Stations by Deep Reinforcement Learning
【24h】

Distributed and Energy-Efficient Mobile Crowdsensing with Charging Stations by Deep Reinforcement Learning

机译:通过深度加固学习分配和节能移动众粘带充电站

获取原文
获取原文并翻译 | 示例

摘要

Mobile crowdsensing (MCS) represents a new sensing paradigm that utilizes the smart mobile devices to collect and share data. Traditional MCS systems mainly leverages the people carried smartphones and other wearable devices which are constrained by the limited sensing capability and battery power. With the popularity of unmanned vehicles like unmanned aerial vehicles (UAVs) and driverless cars, they can provide much more reliable, accurate and cost-efficient sensing services due to to their equipped more powerful sensors. In this paper, we propose a distributed control framework for energy-efficient and DIstributed VEhicle navigation with chaRging sTations, called "e-Divert". It is a distributed multi-agent deep reinforcement learning (DRL) solution, which uses a convolutional neural network (CNN) to extract useful spatial features as the input to the actor-critic network to produce a real-time action. Also, e-Divert incorporates a distributed prioritized experience replay for better exploration and exploitation, and a long short-term memory (LSTM) enabled N-step temporal sequence modeling module. The solution fully explores the spatiotemporal nature of the considered scenario for better vehicle cooperation and competition between themselves and charging stations, to maximize the energy efficiency, data collection ratio, geographic fairness, and minimize the energy consumption simultaneously. Through extensive simulations, we find an appropriate set of hyperparameters that achieve the best performance, i.e., 5 actors in Ape-X architecture, priority exponent 0.5, and LSTM sequence length 3. Finally, we compare with four baselines including one state-of-the-art approach MADDPG. Results show that our proposed e-Divert significantly improves the energy efficiency, as compared to MADDPG, by 3.62 and 2.36 times on average when varying different numbers of vehicles and charging stations, respectively.
机译:移动人群(MCS)表示利用智能移动设备收集和共享数据的新感测范式。传统的MCS系统主要利用人们携带智能手机和其他可穿戴设备,这些设备受限制的传感能力和电池电量。随着无人驾驶车辆(无人机)和无人驾驶汽车等无人驾驶车辆的普及,它们可以为其装备的更强大的传感器提供更可靠,准确和成本效益的传感服务。在本文中,我们提出了一种用于节能和分布式车辆导航的分布式控制框架,充电站称为“电子转移”。它是一种分布式多代理深度加强学习(DRL)解决方案,它使用卷积神经网络(CNN)来提取有用的空间特征作为参与者 - 批评网络的输入来产生实时操作。此外,电子转移包含一个分布式优先级经验重放,以获得更好的探索和开发,并且具有长的短期内存(LSTM)的N步骤时间序列建模模块。该解决方案充分探讨了所考虑的场景的时空性,以便更好的车辆合作和自身和充电站的竞争,以最大限度地提高能源效率,数据收集比,地理公平性,并同时最小化能量消耗。通过广泛的模拟,我们找到了一套适当的超参数,实现了最佳性能,即APE-X架构中的5个演员,优先级指数0.5和LSTM序列长度3.最后,我们与四个基线相比,包括一个 - 最艺术方法Maddpg。结果表明,当分别改变不同数量的车辆和充电站时,我们所提出的电子转移显着提高了3.62和2.36倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号