首页> 外文期刊>IEEE transactions on information forensics and security >A Secure Mobile Crowdsensing Game With Deep Reinforcement Learning
【24h】

A Secure Mobile Crowdsensing Game With Deep Reinforcement Learning

机译:具有深度强化学习功能的安全移动人群拥挤游戏

获取原文
获取原文并翻译 | 示例

摘要

Mobile crowdsensing (MCS) is vulnerable to faked sensing attacks, as selfish smartphone users sometimes provide faked sensing results to the MCS server to save their sensing costs and avoid privacy leakage. In this paper, the interactions between an MCS server and a number of smartphone users are formulated as a Stackelberg game, in which the server as the leader first determines and broadcasts its payment policy for each sensing accuracy. Each user as a follower chooses the sensing effort and thus the sensing accuracy afterward to receive the payment based on the payment policy and the sensing accuracy estimated by the server. The Stackelberg equilibria of the secure MCS game are presented, disclosing conditions to motivate accurate sensing. Without knowing the smartphone sensing models in a dynamic version of the MCS game, an MCS system can apply deep Q-network (DQN), which is a deep reinforcement learning technique combining reinforcement learning and deep learning techniques, to derive the optimal MCS policy against faked sensing attacks. The DQN-based MCS system uses a deep convolutional neural network to accelerate the learning process with a high-dimensional state space and action set, and thus improve the MCS performance against selfish users. Simulation results show that the proposed MCS system stimulates high-quality sensing services and suppresses faked sensing attacks, compared with a Q-learning-based MCS system.
机译:由于自私的智能手机用户有时会向MCS服务器提供伪造的传感结果,从而节省其传感成本并避免隐私泄露,因此移动人群感知(MCS)容易受到伪造的传感攻击。在本文中,MCS服务器与许多智能手机用户之间的交互作用被表述为Stackelberg游戏,在该游戏中,作为领导者的服务器首先确定并广播其针对每种传感精度的付款策略。作为跟随者的每个用户基于服务器所估计的支付策略和感知准确度来选择感知工作量以及随后选择感知准确度以随后接收支付。给出了安全MCS游戏的Stackelberg平衡,并公开了激发精确感测的条件。在不知道MCS游戏动态版本中的智能手机感应模型的情况下,MCS系统可以应用深度Q网络(DQN),这是一种结合了强化学习和深度学习技术的深度强化学习技术,从而得出了针对该问题的最佳MCS策略。伪造的感知攻击。基于DQN的MCS系统使用深度卷积神经网络以高维状态空间和动作集来加速学习过程,从而提高针对自私用户的MCS性能。仿真结果表明,与基于Q学习的MCS系统相比,提出的MCS系统可以刺激高质量的传感服务,并抑制伪造的传感攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号