首页> 外文期刊>Mobile Computing, IEEE Transactions on >Habit2vec: Trajectory Semantic Embedding for Living Pattern Recognition in Population
【24h】

Habit2vec: Trajectory Semantic Embedding for Living Pattern Recognition in Population

机译:Habit2VEC:用于人口生活模式识别的轨迹语义嵌入

获取原文
获取原文并翻译 | 示例

摘要

Recognizing representative living patterns in population is extremely valuable for urban planning and decision making. Thanks to the growing popularity of location-based applications and check-ins on social networking sites, Point of Interest (POI) of a location is quite often available in the trajectory data, which expresses user living semantics. However, adopting trajectory semantics for living pattern recognition is an open and challenging research problem due to three major technical challenges: effective feature representation, suitable granularity selection for habit unit, and reliable habit distance measurement. In this paper, we propose a representation learning based system named habit2vec to represent user trajectory semantics in vector space, which preserves the original user living habit information. We evaluated our proposed system on a large-scale real-world dataset provided by a popular social network operator including 123,803 users for 1.5 months in Beijing. The results justify the representation ability of our system in preserving user habit pattern, and demonstrate the effectiveness of clustering users with similar living patterns.
机译:识别人口中的代表性生活模式对于城市规划和决策来说是非常有价值的。由于基于位置的应用和签到社交网站上的越来越多的普及,所以位置的兴趣点(POI)通常在表达用户生活语义的轨迹数据中。然而,采用轨迹语义为生活模式识别是一个开放和具有挑战性的研究问题,由于三个主要的技术挑战:有效的特征表示,适当的习惯单位的粒度选择,以及可靠的习惯距离测量。在本文中,我们提出了一个名为Habit2VEC的基于基于学习的系统,以表示矢量空间中的用户轨迹语义,其保留了原始用户生活习惯信息。我们在一家流行的社交网络运营商提供的大型现实世界数据集中评估了我们所提出的系统,包括123,803名用户在北京1.5个月。结果证明了我们系统在保护用户习惯模式方面的代表能力,并展示了具有相似生活模式的聚类用户的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号